Contents

Introduction to VLT 2800 ... 3
- Software version .. 3
- High voltage warning ... 4
- These rules concern your safety: ... 4
- Warnings against unintended start: .. 4

Installation ... 5
- Mechanical dimensions ... 5
- Mechanical installation .. 9
- General information about electrical installation 10
- EMC-correct electrical installation ... 11
- Grounding of shielded/armoured control cables 12
- Diagram ... 13
- Electrical installation ... 14
- Safety clamp ... 16
- Input fuses .. 16
- AC line connection ... 16
- Motor connection .. 16
- Direction of motor rotation .. 16
- Motor thermal protection ... 16
- Parallel connection of motors .. 17
- Motor cables .. 17
- Brake connection ... 17
- Ground connection .. 17
- Load sharing .. 18
- Tightening Torque, Power Terminals .. 18
- Calculation of brake resistance .. 18
- Access to control terminals ... 18
- Electrical installation, control circuitry .. 18
- Tightening torques, control cables .. 20
- Electrical installation, control terminals 20
- Relay connection ... 20
- VLT Software Dialog ... 21
- Connection examples .. 22
- Control unit ... 24
- Manual initialization ... 24
- Programming the adjustable frequency drive 25
- Display readout .. 27
- Hand / Auto mode operation .. 27
- Warnings/alarms ... 28
- Special conditions ... 29
- Temperature-related switching frequency 29
- Derating for long motor cables ... 29
- VLT 2800 start-up .. 29

Programming .. 31
This Instruction Manual can be used for all VLT 2800 Series adjustable frequency drives (AFD) with software version 2.7x. The software version number can be seen from parameter 640 Software Version.
High voltage warning

The voltage of the adjustable frequency drive is dangerous whenever the drive is connected to electrical current. Incorrect fitting of the motor or adjustable frequency drive may cause damage to the equipment, serious injury or death. Consequently, it is essential to comply with the instructions in this manual as well as local and national rules and safety regulations.

These rules concern your safety:

1. Disconnect the adjustable frequency drive from the AC line if repair work is to be carried out. Wait 4 minutes to allow for electrical discharge before removing motor and AC line connectors.
2. The [STOP/RESET] key on the control panel of the adjustable frequency drive does not disconnect the equipment from the AC line. Do not use it as a safety switch.
3. The unit must be grounded correctly. The user must be protected against supply voltage and the motor protected against overload in accordance with applicable national and local regulations.
4. The ground leakage currents are higher than 3.5 mA.
5. Protection against motor overload is not included in the factory setting. If this function is required, set parameter 128 Motor thermal protection to ETR trip or ETR warning. For North America: The ETR functions provide Class 20 overload protection for the motor, in accordance with NEC requirements.
6. Do not remove the terminal plugs for the motor and AC line supply while the adjustable frequency drive is connected to the AC line. Ensure that the AC line supply has been disconnected and that 4 minutes has passed before removing motor and AC line plugs.
7. The DC bus terminals are another high voltage input that must be disconnected before servicing the drive. Ensure that all voltage inputs have been disconnected and that 4 minutes has passed before repair work begins.

Warning against unintended start:

1. The motor can be started by means of digital commands, bus commands, references or a local start command whenever the drive is connected to the AC line. Therefore, an unintended start may occur anytime power is applied. Never service the drive or equipment when power is applied to the drive.
2. The motor may start while parameters are being changed. Always activate the stop key [STOP/RESET] by pressing it before data is modified.
3. A motor that has been stopped may start if faults occur in the electronics of the drive, or if a temporary overload or fault clears in the AC line or motor connection.

Motor overload protection

The electronic thermal relay (ETR) in UL listed VLTs provides Class 20 motor overload protection in accordance with the NEC in single motor applications when parameter 128 is set for "ETR TRIP" and parameter 105 Motor current is set for the rated motor current.

Warning:

It can be extremely dangerous to touch the electrical parts even when the mains supply has been disconnected. Also ensure that other mains inputs are disconnected from load sharing through the DC bus. Wait at least 4 minutes after the input power has been removed before servicing the drive.
Mechanical dimensions

The drawings below give the mechanical dimensions. All dimensions are in mm.

- **VLT 2803-2815 200-240 Volt**
- **VLT 2805-2815 380-480 Volt**

The drawing below gives the mechanical dimensions of VLT 2840 (5 HP) 200-240 Volt and VLT 2855-2875 (7 - 10HP) 380-480 Volt. All dimensions are in inches.

- **VLT 2840 200-240 Volt**
- **VLT 2855-2875 380-480 Volt**

The drawing below gives the mechanical dimensions of VLT 2822 (3 HP) 200-240 Volts and VLT 2822-2840 (3 - 5 HP) 380-480 Volts. All dimensions are in inches.

- **VLT 2822 200-240 Volt**
- **VLT 2822-2840 380-480 Volt**

- **VLT 2880-82 380-480V**
Motor coils (195N3110)

RFI 1B filter (195N3103)

Terminal cover
The drawing below gives the dimensions for NEMA 1 terminal covers for VLT 2803-2875. Dimension ‘a’ depends on the unit type.

IP 21 solution
Dimensions

<table>
<thead>
<tr>
<th>Type</th>
<th>Code number</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLT 2803-2815 200-240 V, VLT 2805-2815 380-480 V</td>
<td>195N2118</td>
<td>47</td>
<td>80</td>
<td>170</td>
</tr>
<tr>
<td>VLT 2822 200-240 V, VLT 2822-2840 380-480 V</td>
<td>195N2119</td>
<td>47</td>
<td>95</td>
<td>170</td>
</tr>
<tr>
<td>VLT 2840 200-240 V, VLT 2855-2875 380-480 V</td>
<td>195N2120</td>
<td>47</td>
<td>145</td>
<td>170</td>
</tr>
<tr>
<td>VLT 2880-2882 380-480 V</td>
<td>195N2126</td>
<td>47</td>
<td>205</td>
<td>245</td>
</tr>
</tbody>
</table>

■ EMC filter for long motor cables

![EMC filter diagram]
Mechanical installation
The adjustable frequency drive is cooled by air circulation. For proper cooling, allow a minimum of 4 inches (100 mm) of open space above and below the unit. To protect the unit from overheating, ensure that both the ambient temperature and the 24-hour average temperature are not exceeded. The maximum temperature and 24-hour average are listed in General technical data in this manual. If the ambient temperature is in the range of 113°F - 131°F (45°C - 55°C), derating of the drive must be carried out. See Derating for ambient temperature in this manual. The service life of the unit will be reduced without applicable derating.

Enclosures
In the USA and some other countries, a NEMA 1 terminal cover enclosing terminal connectors is required if the drive is not installed within another enclosure.

Spacing for mechanical installation
All units require a minimum of 4 in of air from other components above and below the enclosure.

Side-by-side
All VLT 2800 units can be installed side-by-side and in any position, as the units do not require ventilation on the side.

NOTE
With the IP 21 solution all units require a minimum of 4 in air on each side. This means that side-by-side mounting is not allowed.
■ General information about electrical installation

■ High voltage warning

⚠️ The voltage of the adjustable frequency drive is dangerous whenever the drive is connected to the AC line. Incorrect installation of the motor or drive may cause damage to the equipment, serious injury or death. Comply with the safety instructions in this manual as well as local and national rules and safety regulations. Touching electrical parts may be fatal - even after the equipment has been disconnected from the AC line. Wait at least 4 minutes for current to dissipate.

NOTE
It is the responsibility of the user or installer to ensure correct grounding and protection in accordance with national and local standards.

■ Grounding

Comply with the following at installation:

- Safety grounding: The drive has a high leakage current and must be grounded properly for safety. Follow all local safety regulations.
- High frequency grounding: Keep grounding cables as short as possible.

Connect all grounds to ensure the lowest possible conductor impedance. The lowest possible conductor impedance is achieved by keeping the conductor as short as possible and by grounding with the greatest possible surface area. If multiple drives are installed in a cabinet, the cabinet backplate, which must be made of metal, should be used as a joint ground reference plate. The drives must be fitted to the backplate at the lowest possible impedance.

To achieve low impedance, connect the drive to the backplate with the drive fastening bolts. Remove all paint from the contact points.

■ High voltage test

A high voltage test can be performed by short-circuiting terminals U, V, W, L1, L2 and L3, and applying max. 2160 V DC in 1 sec. between this short-circuit and terminal 95.
EMC-correct electrical installation

General points to be observed to ensure EMC-correct electrical installation.

- Use only shielded/armoured motor cables and shielded/armoured control cables.
- Connect the screen to ground at both ends.
- Avoid installation with twisted shield ends (pigtailed), since this ruins the shielding effect at high frequencies. Use cable clamps instead.

- It is important to ensure good electrical contact from the installation plate through the installation screws to the metal cabinet of the variable frequency drive.
- Use starwashers and galvanically conductive installation plates.
- Do not use unshielded/unarmoured motor cables in the installation cabinets.

The illustration below shows EMC-correct electrical installation, in which the variable frequency drive has been fitted in an installation cabinet and connected to a PLC.
■ Grounding of shielded/armoured control cables
In general control cables must be shielded/armoured, and the shield must be connected to the unit’s metal cabinet with a cable clamp at each end.

The drawing below shows the correct way to perform the grounding, and what to do when in doubt.

1. Correct grounding
Control cables and cables for serial communication must be attached with cable clamps at both ends to ensure maximum possible electrical contact.

2. Incorrect grounding
Do not use twisted shield ends that are plaited together (pigtailed), as these increase shield impedance at higher frequencies.

3. Protection with respect to ground potential between PLC and VLT
If the ground potential between the VLT variable frequency drive and the PLC (etc.) is different, electric noise may occur that will disturb the whole system. This problem can be solved by fitting an equalising cable, to be placed next to the control cable. Minimum cable cross-section: 6 AWG (16 mm²).

4. In the event of a 50/60 Hz ground loop
If very long control cables are used, 50/60 Hz ground loops can arise, and these can interfere with the whole system. This problem is resolved by attaching one end of the shield to the ground via a 100 nF capacitor (short pin length).
* Integrated 1A RFI filter and brake is an option.
** VLT 2803-2815 200-240 V is not supplied with intermediate circuit coils.
Electrical installation

VLT® 2800 Series

VLT 2803-2815 200-240 V, 2805-2815 380-480 V

VLT 2822 200-240 V, 2822-2840 380-480 V

VLT 2803-2815 200-240 V, 2805-2815 380-480 V
VLT 2840 200-240 V, 2855-2875 380-480 V

Please note, that the units will be supplied with two bottom plates; one for metric glands and one for conduits.
Safety clamp
To maintain the galvanic isolation (PELV) between the control terminals and high-voltage terminals, the accompanying safety clamp must be attached to VLT 2803-2815, 200-240 V, and VLT 2805-2815, 380-480 V. Attach the safety clamp to the strain relief plate with the two screws provided.

Input fuses
For all unit types, external fuses must be fitted in the AC line supply to the drive. For UL/cUL applications with an AC voltage of 200-240 Volts, use fuses type Bussmann KTN-R (200-240 Volts) or Ferraz Shawmut type ATMIR (max. 30A). For UL/cUL applications with an AC voltage of 380-480 Volts, use fuses type Bussmann KTS-R (380-480 Volts). See Technical data in this manual for correct dimensioning of fuses.

It is the responsibility of the installer or user to insure proper external AC power input fusing to the drive.

AC line connection
All drives that are equipped with an RFI filter cannot be connected to a grounded DELTA or IT mains/AC line system.

NOTE
Check that the AC voltage matches the voltage rating of the drive. The drive rating is on the drive nameplate. See Technical data in this manual for correct dimensioning of cable cross-section.

For single phase 220-240 Volts input, attach the neutral wire to terminal N (L2) and connect the phase wire to terminal L1 (L1).

<table>
<thead>
<tr>
<th>No.</th>
<th>N(L2)</th>
<th>L1(L1)</th>
<th>LC</th>
<th>AC line voltage 1 x 220-240 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td></td>
<td></td>
<td>1</td>
<td>Ground connection</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>N(L2)</th>
<th>L1(L1)</th>
<th>LC</th>
<th>AC line voltage 3 x 220-240 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td></td>
<td></td>
<td>1</td>
<td>Ground connection</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>N(L2)</th>
<th>L1(L1)</th>
<th>LC</th>
<th>AC line voltage 3 x 380-480 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td></td>
<td></td>
<td>1</td>
<td>Ground connection</td>
</tr>
</tbody>
</table>

Motor connection
NOTE
It is recommended that an LC filter be connected to the output of the drive for motors without phase insulation paper.

See Technical data in this manual for correct dimensioning for cable cross-section. All types of three-phase asynchronous standard motors can be connected to a drive.

Connect the motor to terminals 96, 97, 98. Connect ground to terminal 99.

<table>
<thead>
<tr>
<th>No.</th>
<th>U</th>
<th>V</th>
<th>W</th>
<th>Motor voltage 0-100% of AC line voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td></td>
<td></td>
<td></td>
<td>Ground connection</td>
</tr>
</tbody>
</table>

See Technical data for correct dimensioning of cable cross-section.

Ensure that the motor is wired for the line voltage before connecting to the drive.

Direction of motor rotation
To change the direction of motor rotation, switch any two phases at the drive output or at motor terminals.

Motor thermal protection
The electronic thermal relay in UL approved variable frequency drives has received the UL approval for single motor protection, when parameter 128 Motor thermal protection has been set for ETR Trip and parameter

380-460 Volt units with RFI-filters may not be connected to AC line supplies in which the voltage between phase and ground is more than 300 Volts. Please note that for the AC line for IT and the delta ground the AC line voltage can exceed 300 Volts between phase and ground. Units with type code R5 can be connected to mains supplies with up to 400 V between phase and ground.

See Technical data for correct dimensioning of cable cross-section.
105 Motor current, $I_{M, N}$ has been programmed to the rated motor current (see motor nameplate).

Parallel connection of motors

The adjustable frequency drive is able to control several motors connected in parallel. The combined total current consumption of the motors is not to exceed the maximum rated output current (I_{INV}) for the adjustable frequency drive. If the motors are to have different rpm values, use motors with different rated rpm values. Motor frequency is changed simultaneously, which means that the ratio between the rated rpm values is maintained.

Problems may arise at start-up and when operating at low rpm if the motor sizes are widely different. This is because the small motors’ relatively high resistance in the stator calls for a higher voltage at the start-up and at low rpm.

NOTE

If an unshielded/unarmoured cable is used, some EMC requirements are not complied with, see EMC test results in the Design Guide.

If the EMC specifications regarding emission are to be complied with, the motor cable must be shielded/armoured, unless otherwise stated for the RFI filter in question. It is important to keep the motor cable as short as possible so as to reduce the noise level and leakage currents to a minimum. The motor cable shield must be connected to the metal cabinet of the variable frequency drive and to the metal cabinet of the motor. The shield connections are to be made with the biggest possible surface area (cable clamp). This is enabled by different installation devices in different variable frequency drives. Mounting with twisted shield ends (pigtails) is to be avoided, since these spoil the shielding effect at high frequencies. If it is necessary to break the shield to install a motor isolator or motor relay, the shield must be continued at the lowest possible HF impedance.

Brake connection

NOTE

Voltages up to 850 VDC occur on the terminals.

<table>
<thead>
<tr>
<th>No.</th>
<th>81 82</th>
<th>Brake resistor terminals</th>
</tr>
</thead>
</table>

Connect the brake resistor wiring to drive terminals 81 and 82. The connection cable to the brake resistor must be shielded/armored. Connect the shield to both the ground of the drive and the brake resistor by means of cable clamps. Dimension the cross-section of the brake cable to match the brake torque.

Ground connection

Since the leakage currents to ground may be higher than 3.5 mA, the adjustable frequency drive must always be connected to ground in accordance with applicable national and local regulations. To ensure that the ground cable has good mechanical connection to terminal 95, the cable cross section must be a minimum 7 AWG (10 mm²). To improve protection...
even further, a Recidual Current Device (RCD) can be fitted to ensure that the adjustable frequency drive cuts out when the leakage currents get too high. Also see RCD Application note MN.90.GX.02.

■ Load sharing

Load sharing provides the facility to connect several frequency converters’ DC intermediate circuits.

This requires that the installation is extended using extra fuses and AC coils (see drawing below). For load sharing parameter 400 Brake function must be set to Load sharing [5]. Use 6.3 mm Faston Plugs for DC (Load Sharing). Contact Danfoss or see instructions no. MI.50.NX.02 for further information.

<table>
<thead>
<tr>
<th>No.</th>
<th>88</th>
<th>89</th>
<th>Loadsharing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>- +</td>
</tr>
</tbody>
</table>

Note that voltage levels of up to 850 V DC may occur between terminals 88 and 89.

■ Tightening Torque, Power Terminals

Power and ground terminals must be tightened with the following torques:

<table>
<thead>
<tr>
<th>VLT</th>
<th>Terminals</th>
<th>Torque [Nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2803- (new-line)/2875</td>
<td>Power line brake</td>
<td>0.5-0.6</td>
</tr>
<tr>
<td></td>
<td>Ground</td>
<td>2-3</td>
</tr>
<tr>
<td>2880- (new-line)/2882</td>
<td>Power line brake</td>
<td>1.2-1.5</td>
</tr>
<tr>
<td></td>
<td>Ground</td>
<td>2-3</td>
</tr>
</tbody>
</table>

■ Calculation of brake resistance

In lifting/lowering applications you need to be able to control an electromagnetic brake. The brake is controlled using a relay output or digital output (terminal 46). The output must be kept closed (voltage-free) for the period of time during which the variable frequency drive is not able to 'support' the motor, for example due to the load being too great. Select Mechanical brake control in parameter 323 or 341 for applications with an electromagnetic brake.

When the output frequency exceeds the brake cut out value set in par. 138, the brake is released if the motor current exceeds the preset value in parameter 140. When stopping the brake is engaged when the output frequency is less than the brake engaging frequency, which is set in par. 139.

If the variable frequency drive is placed at alarm status or in an overvoltage situation the mechanical brake is cut in immediately.

NOTE
This application is only for lifting/lowering without a counterbalance.

■ Access to control terminals

All control terminals are located underneath the protective plate on the front of the adjustable frequency drive. Remove the protective plate by sliding it downwards (see drawing).
Electrical installation, control circuitry

NOTE
Using unshielded/unarmored cable may not comply with some EMI/RFI requirements.

Control wires must be shielded/armored. Connect the shield to the drive chassis with a clamp. Normally, the shield must also be connected to the chassis of the controlling device. (See the instructions for the specific device.) In analog signals or connections using very long wires, 50/60 Hz ground loops may occur because of noise transmitted from the AC line. It may be necessary to break the shield and insert a 100 µF capacitor between the shield and the chassis.
Tightening torques, control cables
Control wires must be connected with a tightening torque of 0.22–0.25 Nm.

Electrical installation, control terminals

NOTE
Using unshielded/unarmored cable may not comply with some EMC/RFI requirements.

Refer to the following table for VLT 2800 terminal designations and their functional descriptions.

<table>
<thead>
<tr>
<th>No.</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-03</td>
<td>Relay outputs 01-03 can be used for indicating status and alarms/warnings.</td>
</tr>
<tr>
<td>12</td>
<td>24 VDC voltage supply.</td>
</tr>
<tr>
<td>18-33</td>
<td>Digital inputs.</td>
</tr>
<tr>
<td>20, 55</td>
<td>Common frame for input and output terminals.</td>
</tr>
<tr>
<td>42</td>
<td>Analog output for displaying frequency, reference, current or torque.</td>
</tr>
<tr>
<td>46¹</td>
<td>Digital output for displaying status, warnings or alarms, as well as frequency output.</td>
</tr>
<tr>
<td>50</td>
<td>+10 VDC supply voltage for potentiometer or thermistor.</td>
</tr>
<tr>
<td>53</td>
<td>Analog voltage input 0 - 10 V DC.</td>
</tr>
<tr>
<td>60</td>
<td>Analog current input 0/4 - 20 mA.</td>
</tr>
<tr>
<td>67¹</td>
<td>+5 VDC supply voltage to Profibus.</td>
</tr>
<tr>
<td>68, 69¹</td>
<td>RS-485, Serial communication.</td>
</tr>
<tr>
<td>70¹</td>
<td>Frame for terminals 67, 68 and 69. Normally this terminal is not to be used.</td>
</tr>
</tbody>
</table>

¹ The terminals are not valid for DeviceNet. See the DeviceNet manual, MG.90.BX.YY for further details.

Relay connection

See parameter 323, Relay output for programming of relay output.

<table>
<thead>
<tr>
<th>No.</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 - 02</td>
<td>1 - 2 make (normally open)</td>
</tr>
<tr>
<td>01 - 03</td>
<td>1 - 3 break (normally closed)</td>
</tr>
</tbody>
</table>

NOTE
To supply internal 24 VDC voltage to the digital input terminals, jumper terminal 12 to terminal 27.

Relay connection

Profibus DIP switches setting

The dip switch is only on the control card with Profibus DP communication. The switch position shown is the factory setting. Switches 1 and 2 are used as cable termination for the RS-485 interface. If the adjustable frequency drive is located as the first or last (or only) unit in the bus system, switches 1 and 2 must be ON. On the remaining adjustable frequency drives, switches 1 and 2 must be OFF. Switches 3 and 4 are not applied.
■ VLT Software Dialog
Connection to terminals 68-70 or
Sub D:
- PIN 3 GND
- PIN 8 P-RS 485
- PIN 9 N-RS 485

■ Sub D plug

An LCP 2 control unit can be connected to the Sub D plug on the control card. Ordering number: 175N0131. LCP control units with ordering number 175Z0401 are not to be connected.
Connection examples

Start/stop
Start/stop using terminal 18 and coasting stop using terminal 27.

![Connection diagram](image1)

Par. 302 Digital input = Start [7]
Par. 304 Digital input = Coasting stop inverted [2]

For Precise start/stop the following settings are made:
- Par. 302 Digital input = Precise start/stop [27]
- Par. 304 Digital input = Coasting stop inverted [2]

Pulse start/stop
Pulse start using terminal 18 and pulse stop using terminal 19. In addition, the jog frequency is activated via terminal 29.

![Connection diagram](image2)

Par. 302 Digital input = Pulse start [8]
Par. 303 Digital input = Stop inverted [6]
Par. 304 Digital input = Coasting stop inverted [2]
Par. 305 Digital input = Jog [13]

Speed up/slow down
Speed up/slow down using terminals 29/33.

![Connection diagram](image3)

Par. 302 Digital input = Start [7]
Par. 303 Digital input = Freeze reference [14]
Par. 305 Digital input = Speed up [16]
Par. 307 Digital input = Slow down [17]

Potentiometer reference
Voltage reference via a potentiometer.

![Connection diagram](image4)

Par. 308 Analog input = Reference [1]
Par. 309 Terminal 53, min. scaling = 0 Volt
Par. 310 Terminal 53, max. scaling = 10 Volt

Connection of a 2-wire transmitter
Connection of a 2-wire transmitter as feedback to terminal 60.

![Connection diagram](image5)

Par. 314 Analog input = Feedback [2]
Par. 315 Terminal 60, min. scaling = 4 mA
Par. 316 Terminal 60, max. scaling = 20 mA
Control unit

On the front of the variable frequency drive there is a control panel.

The control panel is divided into five functional groups:
1. Status LED
2. Keys for changing parameters and shifting display function.
3. LEDs.
4. Keys for local operation.

All displays of data are in the form of a six-digit LED display capable of showing one item of operating data continuously during normal operation. As a supplement to the display, there are three LEDs for indication of electrical connection (ON), warning (WARNING) and alarm (ALARM). Most of the variable frequency drive's parameter Setups can be changed immediately via the control panel, unless this function has been programmed as Locked [1] via parameter 018 Lock for data changes.

The [CHANGE DATA] key is also used for confirming a change of parameter settings.

[+] / [-] are used for selecting parameters and for changing parameter values. These keys are also used in Display mode for selecting the display of an operating value.

The [QUICK MENU] + [+] keys must be pressed at the same time to give access to all parameters. See Menu mode.

[STOP/RESET] is used for stopping the connected motor or for resetting the variable frequency drive after a trip. Can be selected as Active [1] or Not active [0] via parameter 014 Local stop/reset. In Display mode, the display will flash if the stop function is activated.

NOTE
If the [STOP/RESET] key is set at Not active [0] in parameter 014 Local stop/reset, and there is no stop command via the digital inputs or serial communication, the motor can only be stopped by disconnecting the electrical voltage to the variable frequency drive.

[START] is used for starting the variable frequency drive. It is always active, but the [START] key cannot override a stop command.

Manual initialization

To manually initialize the adjustable frequency drive to factory default settings, first disconnect AC line voltage. Hold the [QUICK MENU] and [+][-] and [CHANGE DATA] keys down while simultaneously reconnecting the AC line voltage. Release the keys. The drive has now been programmed for factory settings.

Control keys

[QUICK MENU] allows access to the parameters used for the Quick menu. The [QUICK MENU] key is also used if a change to a parameter value is not to be implemented. See also [QUICK MENU] + [+].

[CHANGE DATA] is used for changing a setting.
Data readout:
Display mode

In normal operation, one item of operating data can be displayed continuously at the operator’s own choice. By means of the [+/−] keys the following options can be selected in Display mode:
- Output frequency [Hz]
- Output current [A]
- Output voltage [V]
- Intermediate circuit voltage [V]
- Output power [kW]
- Scaled output frequency f_out x p008

Menu mode

In order to enter the Menu mode [QUICK MENU] + [+] must be activated at the same time.
In Menu mode, most of the variable frequency drive parameters can be changed. Scroll through the parameters using the [+/−] keys. While scrolling in the Menu mode proceeds, the parameter number will flash.

The display shows that the setting in parameter 102 Motor power P_M,N is 0.75. In order to change the value of 0.75, [CHANGE DATA] must first be activated; the parameter value can then be changed using the [+/−] keys.

If for a given parameter the display shows three dots at the right, it means that the parameter value has more than three digits. In order to see the value, activate [CHANGE DATA].

Quick menu

Using the [QUICK MENU] key, it is possible to access the 12 most important parameters of the variable frequency drive. After programming, the variable frequency drive is in most cases ready for operation. When the [QUICK MENU] key is activated in Display mode, the Quick menu starts. Scroll through the quick menu using the [+/−] keys and change the data values by first pressing [CHANGE DATA] and then changing the parameter value with the [+/−] keys.
The Quick menu parameters are:
- Par. 102 Motor power P_M,N
- Par. 103 Motor voltage U_M,N
- Par. 104 Motor frequency f_M,N
- Par. 105 Motor current I_M,N
- Par. 106 Rated motor speed n_M,N
- Par. 107 Automatic motor adaption
- Par. 204 Minimum reference Ref_MIN
- Par. 205 Maximum reference Ref_MAX
- Par. 207 Ramp-up time
- Par. 208 Ramp-down time
- Par. 002 Local/remote operation
- Par. 003 Local reference

Parameter 102 - 106 can be read out from the motor’s nameplate.

Programming the adjustable frequency drive

NOTE
The motor must be stopped to change parameter data.

Program the drive in accordance with the following procedure:
1. Press the [QUICK MENU] key to enter the Quick menu.
2. Scroll through the Quick menu using the
[+] and [-] keys.
3. Change the data values by first pressing
[CHANGE DATA] key
4. and then change the parameter value with
the [+] and [-] keys.
5. Press [CHANGE DATA] again to accept the change
or [QUICK MENU] to cancel the change. Press
[QUICK MENU] once more to exit Quick menu
mode and enter Display mode. (The drive will
default from Quick menu mode to Display mode
in 2 minutes if no activity has taken place.)

NOTE
Enter parameters 102 through 106 data, at
minimum, to ready the drive for operation.
Data for parameters 102 through 106 can
be read from the motor nameplate.

Automatic motor tuning

Automatic motor tuning (AMT) measures stator
resistance R_s without the motor turning. This means
that the motor is not delivering any torque. AMT
can optimize adjustment of the adjustable frequency
drive to the motor. For best possible tuning, it is
recommended that AMT be performed on a cold
motor. Repeated AMT runs can cause motor heating,
resulting in an increase in the stator resistance. As
a rule, however, this is not critical. (See parameter
107, *Automatic motor tuning, AMT* description
for more detail before running AMT.)

Perform AMT in accordance with the
following procedure:

1. Press the [QUICK MENU] key to enter
Quick menu mode
2. Use the [+] key to scroll to parameter 107.
"107" will now flash.
4. Press [CHANGE DATA] and use the [+] key
to select data value [2], *Optimization on (AMT
5. Press [START] key to activate AMT. "107" will
now flash and dashes will move from left to
right in the data value field.
6. When "107" appears once more with the data
value [0], AMT is complete. Press [STOP/RESET]
to save the motor data into the drive memory.

7. "107" will then continue to flash with the data
value [0]. Press [QUICK MENU] to exit Menu
mode and enter Display mode.
Display readout

Fr
The variable frequency drive shows the present output frequency in Hertz [Hz].

Io
The variable frequency drive shows the present output current in Amps [A].

Uo
The variable frequency drive shows the present output voltage in Volt [V].

Ud
The variable frequency drive shows the intermediate circuit voltage in Volt [V].

Po
The variable frequency drive shows the calculated output in kilowatt [kW].

notrun
This message is shown if an attempt is made to change a parameter value while the motor is running. Stop the motor to change the parameter value.

LCP
This message is shown if an LCP 2 control unit is fitted and the [QUICK MENU] or [CHANGE DATA] key is activated. If an LCP 2 control unit is fitted you can only change parameters with that.

Ha
The variable frequency drive shows the present Hand mode reference frequency in Herz (Hz).

SC
The variable frequency drive shows scaled output frequency (the present output frequency x parameter 008).

Hand / Auto mode operation

During Auto mode operation, the adjustable frequency drive receives an external reference through the control terminals as analog or digital signals. In Auto mode, use the [+] and [-] keys to scroll through the display of drive status messages. In Hand mode, it is possible to control the speed of the drive locally through the keypad.

On the control terminals, the following control signals will remain active when Hand mode is activated:
- Hand Start (LCP2)
- Off Stop (LCP2)
- Auto Start (LCP2)
- Reset
- Coasting Stop Inverse
- Reset and Coasting Stop Inverse
- Quick Stop Inverse
- Stop Inverse
- Reversing
- DC Braking Inverse
- Setup Select LSB
- Setup Select MSB
- Thermistor
- Precise Stop Inverse
- Precise Stop/Start
- Jog
- Stop Command Via Serial Comm.

Switching between Auto and Hand mode:

To switch between operational modes, press the [Change Data] key. The display will indicate the current mode of operation.

Use the [+] and [-] keys to toggle between Hand and Auto mode. Press the [Change Data] key again to activate the selected mode, otherwise the mode displayed will take effect automatically in about three seconds.

Operation in Hand mode:

When the adjustable frequency drive is running normally in Hand mode, the display will show HA to indicate Hand mode along with the drive output frequency.
In Hand mode, the local speed reference can be increased or decreased with the [+] and [-] keys:

![+]

![−]

In Hand mode, the [+] and [-] keys are also used to toggle through status messages. Press and hold the [Change Data] key for approximately 3 seconds. When the display begins to flash, use the [+] and [-] keys to change the drive status display. The displays are temporary and will default back to output frequency.

NOTE

Parameter 020 can be used to disable Hand mode operation.

Warnings/alarms

Warnings or alarms appear in the LED display as a numerical code [Err. xx]. A warning is displayed until the fault has been corrected, while an alarm will flash until the [STOP/RESET] key is pressed. The table in **Warnings/alarms messages** in this manual explains the various warnings and alarms, and whether a fault locks the adjustable frequency drive. After a Trip locked fault, cut off the AC line supply and correct the fault. Then reconnect the AC line supply and press the [STOP/RESET] key. The adjustable frequency drive is now reset and ready. See **Warnings/alarms messages** in this manual for more detail.
■ Special conditions

■ See Derating for ambient temperature.

The ambient temperature (T_{AMB,MAX}) is the maximum temperature allowed. The average (T_{AMB,AVG}) measured over 24 hours, must be at least 5 °C lower. If the variable frequency drive operates at temperatures above 113 °F (45 °C), a derating of the rated output current is necessary.

■ Temperature-related switching frequency

This function ensures the highest possible switching frequency without the adjustable frequency drive becoming thermally overloaded. The internal temperature determines the switching frequency based on the load, the ambient temperature, the supply voltage and the cable length. The function ensures that the drive automatically adjusts the switching frequency between the minimum and maximum switching frequency (parameter 411), see drawing below.

When using the LC filter the minimum switch frequency is 4.5 kHz.

■ Derating for long motor cables

The adjustable frequency drive has been designed for a 240 ft (75 m) unscreened/unarmored cable or a 80 ft (25 m) screened/armored cable and a motor cable with a rated cross-section. If a cable with a larger cross-section is required, it is recommended to reduce the output current by 5% for each step that the cable cross-section is increased. (Increased cable cross-section leads to increased capacitance to ground, and thus to an increased ground leakage current.)

■ VLT 2800 start-up

Pre-installation checks

1. Compare drive model number to what was ordered.
2. Ensure each of following are rated for same voltage:
 - Drive
 - Power line
 - Motor
3. Record following motor data:
 - Voltage
 - Frequency
 - Full load current
 - Full load speed
 - Power - convert HP to kW (See conversion table in parameter 102, Motor Power, in this manual.)
4. Ensure that rated drive current is equal to or greater than total full load current.
 - Drive can be at most one size smaller than motor.
 - For multiple motor operations, add full load current ratings of all motors.
 - If drive rating is less than motor(s), full motor output cannot be achieved.
5. Check motor wiring:
 - Any disconnect between drive and motor should be interlocked to drive safety interlock circuit to avoid unwanted drive trips.
 - No power factor correction capacitors can be connected between drive and motor.
 - Two speed motors must be wired permanently for full speed.
 - Y-start, Δ-run motors must be wired permanently for run.

MG.28.A8.22 - VLT is a registered Danfoss trademark
Installation checks
1. Input fusing in power supply for all drives must be provided.
2. Environmental concerns - for standard NEMA 1 drive:
 • Clean air supply
 • Dry air (5% to 85% relative humidity, non-condensing)
 • 32°F (0°C) to 104°F (40°C) ambient temperature operating range, or as rated
 • 1000m (3,300 ft) maximum elevation with no derating
 • Keep any construction dirt out of drive.
3. Wiring
 • Wire drive in accordance with instructions and diagrams received with drive.
 • Separate conduits must be provided to drive for input power, output power, and control wiring.
 • Protect signal wires from noise.
 • Ground each drive individually.
 • Double check input and output power wiring for correct location.

Setting up drive for motor start
Ensure that all warnings provided in this manual have been adhered to. Apply power to the unit. Enter motor nameplate data into drive through Quick Menu.
1. Parameter 102, MOTOR POWER (in kW) (See conversion table in parameter 102, Motor Power, in this manual.)
2. Parameter 103, MOTOR VOLTAGE
3. Parameter 104, MOTOR FREQUENCY
4. Parameter 105, MOTOR CURRENT
5. Parameter 106, MOTOR SPEED
6. Parameter 107, select AUTOMATIC MOTOR TUNING

Operational tests - HAND
1. Check motor rotation from drive. If incorrect, disconnect input power from drive and reverse two leads between drive and motor.
2. Accelerate motor quickly to full speed and verify operation.
3. Decelerate motor quickly to stop and verify operation.
4. Operate motor over entire speed range while closely checking for resonance.

Operational tests - AUTO
1. Ensure that drive follows run/stop and safety interlock commands from system.
2. Ensure drive follows speed reference, or feedback, from system.
Operation & Display

001 Language

Value:
- English (ENGLISH) [0]
- German (DEUTSCH) [1]
- French (FRANCAIS) [2]
- Danish (DANSK) [3]
- Spanish (ESPAÑOL) [4]
- Italian (ITALIANO) [5]

Function:
This parameter is used to choose the language to be shown in the display whenever the LCP control unit is connected.

Description of choice:
There is a choice of the languages shown. The factory setting may vary.

002 Local/remote operation

Value:
- Remote operation (REMOTE) [0]
- Local operation (LOCAL) [1]

Function:
There is a choice of two different modes of operation of the variable frequency drive. Remote operation [0] or Local operation [1]. See also parameter 013 Local control if Local operation [1] is selected.

Description of choice:
If Remote operation [0] is selected, the variable frequency drive is controlled via:
1. the control terminals or via serial communication.
2. the [START] key. This cannot, however, override stop commands transmitted via the digital inputs or via serial communication.
3. the [STOP/RESET] and [JOG] keys, on the condition that these are active.

If Local operation [1], is selected, the variable frequency drive is controlled via:
1. the [START] key. This cannot, however, override stop commands via the digital inputs (see parameter 013 Local control).

2. the [STOP/RESET] and [JOG] keys, on the condition that these are active.
3. the [FWD/REV] key, on the condition that is has been selected as active in parameter 016 Local reversing, and that parameter 013 Local control is set at Local control and open loop [1] or Local control as parameter 100 [3]. Parameter 200 Output frequency range is set at Both directions.
4. parameter 003 Local reference where the reference can be set using the [+] and [-] keys.
5. an external control command that can be connected to the digital inputs (see parameter 013 Local control).

NOTE
The [JOG] and [FWD/REV] keys are located on the LCP control unit.

003 Local reference

Value:
Par.013 Local control must be set to [1] or [2]:
- 0 - fMAX (par. 202) ★ 000,000,000

Par. 013 Local control must be set to [3] or [4] and parameter 203 Reference/feedback range to [0]:
- RefMIN - RefMAX (par. 204-205) ★ 000,000,000

Par. 013 Local control must be set to [3] or [4] and parameter 203 Reference/feedback range to [1]:
- RefMAX - + RefMAX (par. 204-205) ★ 000,000,000

Function:
In this parameter, the local reference can be set manually. The unit of the local reference depends on the configuration selected in parameter 100 Configuration.

Description of choice:
In order to protect the local reference, parameter 002 Local/remote operation must be set to Local operation [1]. Local reference cannot be set via serial communication.
004 Active Setup

(ACTIVE SETUP)

Value:
Factory Setup (FACTORY SETUP) [0]
★setup 1 (SETUP 1) [1]
setup 2 (SETUP 2) [2]
Setup 3 (SETUP 3) [3]
setup 4 (SETUP 4) [4]
Multi Setup (MULTI SETUP) [5]

Function:
The active parameter Setup is selected here. All parameters can be programmed in four individual parameter Setups. Shifts between Setups can be made in this parameter via a digital input or via serial communication.

Description of choice:
Factory Setup [0] contains the factory-set parameter values. Setup 1-4 [1]-[4] are four individual Setups which can be selected as required. Multi Setup [5] is used where remote-controlled shifts between the four Setups via a digital input or via serial communication is required.

005 Programming Setup

(EDIT SETUP)

Value:
Factory Setup (FACTORY SETUP) [0]
Setup 1 (SETUP 1) [1]
Setup 2 (SETUP 2) [2]
Setup 3 (SETUP 3) [3]
Setup 4 (SETUP 4) [4]
★Active Setup (ACTIVE SETUP) [5]

Function:
You can select which Setup you want to program during operation (applies both via the control panel and the serial communication port). It is, for example, possible to program Setup 2 [2], while the active Setup is set to Setup 1 [1] in parameter 004 Active Setup.

Description of choice:
Factory Setup [0] contains the factory-set data and can be used as a source of data if the other Setups are to be reset to a known status. Setup 1-4 [1]-[4] are individual Setups that can be programmed freely during operation. If Active Setup [5] is selected, the programming Setup will be equal to parameter 004 Active Setup.

★ = factory setting. () = display text [] = value for use in communication via serial communication port

NOTE
If data is modified or copied to the active Setup, the modifications have an immediate effect on the unit’s operation.

006 Setup copying

(SETUP COPY)

Value:
★No copying (NO COPY) [0]
Copy to Setup 1 from # (COPY TO SETUP 1) [1]
Copy to Setup 2 from # (COPY TO SETUP 2) [2]
Copy to Setup 3 from # (COPY TO SETUP 3) [3]
Copy to Setup 4 from # (COPY TO SETUP 4) [4]
Copy to all Setups from # (COPY TO ALL) [5]

Function:
You can copy from the selected active Setup in parameter 005 Programming setup to the selected Setup or Setups in this parameter.

NOTE
Copying is only possible in Stop (motor stopped in connection with a stop command).

Description of choice:
Copying begins when the required copying function has been selected and the [OK]/[CHANGE DATA] key has been pushed. The display indicates when copying is in progress.

007 LCP copy

(LCP COPY)

Value:
★No copying (NO COPY) [0]
Upload all parameters (UPL. ALL PAR.) [1]
Download all parameters (DWNL. ALL PAR.) [2]
Download size-independent parameters (DWNL.OUTPIND.PAR.) [3]

Function:
Parameter 007 LCP copy is used if you want to use the LCP 2 control panel’s integral copy function. The function is used if you want to copy all parameter...
setups from one variable frequency drive to another by moving the LCP 2 control panel.

Description of choice:
Select **Upload all parameters** [1] if you want all parameter values to be transferred to the control panel. Select **Download all parameters** [2] if all parameter values transferred are to be copied to the frequency converter to which the control panel is attached. Select **Download size-independent par**. [3] if you only want to download the size-independent parameters. This is used when downloading to a variable frequency drive with a different rated power size than that from which the parameter setup originates.

NOTE
Upload/download can only be performed in stop mode. Download can only be performed to a frequency converter with the same software version number, see parameter 626 Database identification no.

008 Display scaling of output frequency

Value:

0.01 – 100.00 ★ 1.00

Function:
In this parameter, the factor is selected by which the output frequency is to be multiplied. The value is shown in the display, provided parameters 009-012 Display readout have been set to Output frequency x scaling [5].

Description of choice:
Set the required scaling factor.

009 Large display readout

Value:

No readout (NONE) [0]
Resulting reference [%] (REFERENCE %) [1]
Resulting reference [unit] (REFERENCE [UNIT]) [2]
Feedback [unit] (FEEDBACK [UNIT]) [3]
★ Frequency [Hz] (FREQUENCY [HZ]) [4]
Output frequency x scaling (FREQUENCY X SCALE) [5]

Function:
In this parameter you can select the data value that you wish to display in the LCP control unit display line 2 when the variable frequency drive is switched on. The display will also be included in the scrollbar in display mode. In parameters 010-012 Display readout you can select a further three data values, which are displayed in display line 1.

Description of choice:
No readout can only be selected in parameters 010-012 Small display readout.

★ = factory setting. () = display text [] = value for use in communication via serial communication port
Resulting reference [%] gives, as a percentage, the resulting reference in the range from Minimum reference, Ref_{MN} to Maximum reference, Ref_{MAX}.

Reference [unit] gives the resulting reference with unit Hz in Open loop. In Closed loop the reference unit is selected in parameter 416 Process units.

Feedback [unit] gives the resulting signal value using the unit/scaling selected in parameter 414 Minimum feedback, FB_{LOW}, 415 Maximum feedback, FB_{HIGH} and 416 Process units.

Frequency [Hz] gives the output frequency of the variable frequency drive.

Output frequency x scaling [-] equals the present output frequency f_M multiplied by the factor set in parameter 008 Display scaling of output frequency.

Motor current [A] gives the phase current of the motor measured as an effective value.

Torque [%] denotes the motor’s present load in relation to the motor’s rated torque.

Power [kW] gives the present power that the motor is absorbing in kW.

Power [HP] gives the present power that the motor is absorbing in HP.

Motor voltage[V] gives the voltage supplied to the motor.

DC link voltage [V] gives the intermediate circuit voltage of the variable frequency drive.

Thermal load motor [%] gives the calculated/estimated load on the motor. 100% is the cut-out limit.

Thermal load [%] gives the calculated/estimated thermal load on the variable frequency drive. 100% is the cut-out limit.

Running hours [Hours] gives the number of hours that the motor has run since the last reset in parameter 619 Reset of running hours counter.

Digital input [Binary code] gives the signal status from the 5 digital inputs (18, 19, 27, 29 and 33). Terminal 18 corresponds to the bit on the extreme left. ‘0’ = no signal, ‘1’ = signal connected.

Analog input 53 [V] gives the voltage value of terminal 53.

Analog input 60 [mA] gives the present value of terminal 60.

Pulse reference [Hz] gives the reference in Hz connected to terminal 33.

External reference [%] gives the sum of external references as a percentage (sum of analog/pulse/serial communication) in the range from Minimum reference, Ref_{MN} to Maximum reference, Ref_{MAX}.

Status word [Hex] gives one or several status conditions in a Hex code. See Serial communication in the Design Guide for further information.

Heatsink temp.[°C] gives the present heatsink temperature of the variable frequency drive. The cut-out limit is 195-212 °F (90-100°C), while cutting back in occurs at 160 ± 5% (70 ± 5°C).

Alarm word [Hex] gives one or several alarms in hex code. See Serial communication in the Design Guide for further information.

Control word [Hex] gives the control word for the variable frequency drive. See Serial communication in the Design Guide for further information.

Warning word [Hex] gives one or several warnings in hex code. See Serial communication in the Design Guide for further information.

Extended status word [Hex] gives one or several status modes in Hex code. See Serial communication in the Design Guide for further information.

Communication option card warning [Hex] gives a warning word if there is a fault in the communication bus. Only active if communication options are installed. If there are no communication options 0 Hex is displayed.

Pulse count gives the number of pulses that the unit has registered.
010 Small display line 1.1

Value:
See par. 009 Large display readout

Reference [%] [1]

Function:
In this parameter, the first of three data values can be selected that is to be displayed in the LCP control unit display, line 1, position 1. This is a useful function, e.g. when setting the PID regulator, as it gives a view of process reactions to reference changes. The display readout is activated by pushing the [DISPLAY STATUS] key.

Description of choice:
See parameter 009 Large display readout.

011 Small display readout 1.2

Value:
See parameter 009 Large display readout

Motor current [A][6]

Function:
See the functional description given under parameter 010 Small display readout.

Description of choice:
See parameter 009 Large display readout.

012 Small display readout 1.3

Value:
See parameter 009 Large display readout

Power [kW][8]

Function:
See the functional description given under parameter 010 Small display readout.

Description of choice:
See parameter 009 Large display readout.

013 Local control

Value:
Local not active (DISABLE) [0]
Local control and open loop (LOC CTRL/OPEN LOOP) [1]
Remote-operated control and open loop (LOC+DIG CTRL) [2]
Local control as parameter 100 (LOC CTRL/AS P100) [3]
Remote-operated control as parameter 100 (LOC+DIG CTRL/AS P100) [4]

Function:
This is where the required function is selected if, in parameter 002 Local/remote operation, Local operation [1] has been chosen.

Description of choice:
If Local not active [0] is selected, it is not possible to set a reference via parameter 003 Local reference. In order to enable a shift to Local not active [0], parameter 002 Local/remote operation must be set to Remote operation [0].

Local control and open loop [1] is used if the motor speed is to be set via parameter 003 Local reference. When this choice is made, parameter 100 Configuration automatically shifts to Speed regulation, open loop [0].

Remote-operated control and open loop [2] functions in the same way as Local control and open loop [1]; however, the variable frequency drive can also be controlled via the digital inputs.

Local control as parameter 100 [3] is used when the motor speed is to be set via parameter 003 Local reference, but without parameter 100 Configuration automatically shifting to Speed regulation, open loop [0].

Remote-operated control as parameter 100 [4] works the same way as Local control as parameter 100 [3]; however, the variable frequency drive can also be controlled via the digital inputs.

Shifting from Remote operation to Local operation in parameter 002 Local/remote operation, while this parameter has been set to Remote-operated control and open loop [1]: The present motor frequency and direction of rotation will be maintained. If the present direction of rotation does not respond to the reverse signal (negative reference), the reference will be set to 0.

★ = factory setting. () = display text [] = value for use in communication via serial communication port
Shifting from Local operation to Remote operation in parameter 002 Local/remote control, while this parameter has been set to Remote-operated control and open loop [1]: The configuration selected in parameter 100 Configuration will be active. The shift will be smooth.

Shifting from Remote control to Local control in parameter 002 Local/remote operation, while this parameter has been set to Remote-operated control as parameter 100 [4]: the present reference will be maintained. If the reference signal is negative, the local reference will be set to 0.

Shifting from Local operation to Remote operation in parameter 002 Local/remote operation, while this parameter has been set to Remote operation: The local reference will be replaced by the remote-operated reference signal.

Description of choice:
If Not active [0] is selected in this parameter, the JOG-key will be inactive.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>014 Local stop (LOCAL STOP)</td>
<td>Not active (DISABLE) [0]</td>
<td>In this parameter, the local STOP-key can be engaged or disengaged on the control panel and on the LCP control panel.</td>
</tr>
<tr>
<td></td>
<td>✭ Active (ENABLE) [1]</td>
<td></td>
</tr>
<tr>
<td>016 Local reverse (LOCAL REVERSE)</td>
<td>Not active (DISABLE) [0]</td>
<td>In this parameter you can select/deselect the reverse function on the LCP control panel. The key can only be used if parameter 002 Local/remote operation is set to Local operation [1] and parameter 013 Local control to Local control, open loop [1] or Local control as parameter 100 [3].</td>
</tr>
<tr>
<td></td>
<td>✭ Active (ENABLE) [1]</td>
<td></td>
</tr>
<tr>
<td>017 Local reset of trip (LOCAL RESET)</td>
<td>Not active (DISABLE) [0]</td>
<td>In this parameter, the reset function on the control panel can be engaged/disengaged.</td>
</tr>
<tr>
<td></td>
<td>✭ Active (ENABLE) [1]</td>
<td></td>
</tr>
<tr>
<td>018 Lock for data changes (DATA CHANGE LOCK)</td>
<td>Not locked (NOT LOCKED) [0]</td>
<td>In this parameter, the jog function on the LCP control panel can be engaged/disengaged.</td>
</tr>
<tr>
<td></td>
<td>✭ Locked (LOCKED) [1]</td>
<td></td>
</tr>
</tbody>
</table>

NOTE
If Not active [0] is selected in this parameter, the [STOP]-key will be inactive.

NOTE
If Not active [0] is selected, the motor cannot be stopped by means of the [STOP]-key.

NOTE
Select Not active [0], only if an external reset signal has been connected via the digital inputs.

★ = factory setting. [] = value for use in communication via serial communication port
Function:
In this parameter, it is possible to 'lock' the controls to disable data changes via the control keys.

Description of choice:
If Locked [1] is selected, data changes in the parameters cannot be made; however, it will still be possible to make data changes via serial communication. Parameter 009-012 Display readout can be changed via the control panel.

019 Operating mode at power-up, local operation

(POWER UP ACTION)

Value:
- Auto restart, use saved reference (AUTO RESTART) [0]
- ★Forced stop, use saved reference (LOCAL=STOP) [1]
- Forced stop, set ref. to 0 (LOCAL=STOP, REF=0) [2]

Function:
Setting of the required operating mode when the electrical voltage is engaged. This function can only be active if Local operation [1] has been selected in parameter 002 Local/remote operation.

Description of choice:
Auto restart, use saved ref. [0] is selected if the variable frequency drive is to start using the local reference (set in parameter 003 Local reference) and the start/stop state given via the control keys immediately prior to the electrical voltage being cut out.
Forced stop, use saved ref. [1] is selected if the variable frequency drive is to remain stopped when the electrical voltage is engaged, until the [START]-key is activated. After a start command the motor speed is ramped up to the saved reference in parameter 003 Local reference. Forced stop, set ref. to 0 [2] is selected if the variable frequency drive is to remain stopped when the electrical voltage is cut back in. Parameter 003 Local reference is to be zeroed.

NOTE
In remote operation (parameter 002 Local/remote operation) the start/stop state at the time of electrical connection will depend on the external control signals. If Pulse start [8] is selected in parameter 302 Digital input, the motor will remain stopped after electrical connection.

020 Hand operation

(HAND OPERATION)

Value:
- ★Not active (DISABLE) [0]
- Active (ENABLE) [1]

Function:
In this parameter you can select whether it should be possible or not to switch between Auto- and Hand mode. In Auto mode the variable frequency drive is controlled by external signals whereas the variable frequency drive in Hand mode is controlled via a local reference directly from the control unit.

Description of choice:
If Not active [0] is selected in this parameter, the Hand mode function will be inactive. If Active [1] is selected you can switch between Auto- and Hand mode. For further information, see the Control Unit section.

024 User-defined Quick Menu

(USER QUICK MENU)

Value:
- ★Not active (DISABLE) [0]
- Active (ENABLE) [1]

Function:
In this parameter you can select the standard setup of the Quick menu key on the control panel and the LCP 2 control panel. Using this function, in parameter 025 Quick Menu setup the user can select up to 20 parameters for the Quick Menu key.

Description of choice:
If not active [0] is selected, the standard setup of the Quick Menu key is active.
If Active [1] is selected, the user-defined Quick Menu is active.

025 Quick Menu setup

(QUICK MENU SETUP)

Value:

[Index 1 - 20] Value: 0 - 999 ★ 000

Function:

In this parameter you define which parameters are required in the Quick Menu when parameter 024 User-defined Quick Menu is set to Active [1].

Up to 20 parameters can be selected for the user-defined Quick Menu.

NOTE

Please note that this parameter can only be set using an LCP 2 control panel. See Order form.

Description of choice:

The Quick Menu is set up as follows:

1. Select parameter 025 Quick Menu setup and press [CHANGE DATA].
2. Index 1 indicates the first parameter in Quick Menu. You can scroll between the index numbers using the [+ / -] keys. Select Index 1.
3. Using [< >] you can scroll between the three figures. Press the [<] key once ad the last number in the parameter number can be selected using the [+ / -] keys.
 Set Index 1 to 100 for parameter 100 Configuration.
4. Press [OK] when Index 1 has been set to 100.
5. Repeat steps 2 - 4 until all parameters required have been set to the Quick Menu key.
6. Press [OK] to complete the Quick Menu setup.

If parameter 100 Configuration is selected at Index 1, Quick Menu will start with this parameter every time Quick Menu is activated.

Please note that parameter 024 User-defined Quick Menu and parameter 025 Quick Menu setup are reset to the factory setting during initialisation.

★ = factory setting. () = display text [] = value for use in communication via serial communication port
Load and Motor

100 Configuration (CONFIGURATION)

Value:

★ Speed control, open loop (SPEED OPEN LOOP) [0]
Speed control, closed loop (SPEED CLOSED LOOP) [1]
Process control, closed loop (PROCESS CLOSED LOOP) [3]

Function:

This parameter is used to select the configuration to which the variable frequency drive is to be adapted. This makes adaptation to a given application simple, since the parameters not used in a given configuration are hidden (not active).

Description of choice:

If Speed control, open loop [0] is selected, normal speed control is obtained (without feedback signal) with automatic load and slip compensation to ensure a constant speed at varying loads. Compensations are active, but may be disabled in parameter 134 Load compensation and parameter 136 Slip compensation as required.

If Speed control, closed loop [1] is selected, better speed accuracy is obtained. A feedback signal must be added, and the PID regulator must be set in parameter group 400 Special functions.

If Process control, closed loop [3] is selected, the internal process regulator is activated to enable precise control of a process in relation to a given process signal. The process signal can be set to the relevant process unit or as a percentage. A feedback signal must be added from the process and the process regulator must be set in parameter group 400 Special functions. Process closed loop is not active if a DeviceNet card is mounted and Instance 20/70 or 21/71 is chosen in parameter 904 Instance types.

101 Torque characteristic (TORQUE CHARACT)

Value:

★ Constant torque (CONSTANT TORQUE) [1]
Variable torque low (TORQUE: LOW) [2]
Variable torque medium (TORQUE: MEDIUM) [3]
Variable torque high (TORQUE: HIGH) [4]
Variable torque low with CT start (VT LOW CT START) [5]
Variable torque medium with CT start (VT MEDIUM CT START) [6]
Variable torque high with CT start (VT HIGH CT START) [7]
Special motor mode (SPECIAL MOTOR MODE) [8]

CT = Constant torque

Function:

This parameter enables a choice of principle for adaptation of the U/f ratio of the variable frequency drive to the torque characteristic of the load. See par. 135 U/f ratio.

Description of choice:

If Constant torque [1] is selected, a load-dependent U/f characteristic is obtained, in which output voltage and output frequency are increased at increasing loads in order to maintain constant magnetization of the motor.

Select Variable torque low [2], Variable torque medium [3] or Variable torque high [4], if the load is square (centrifugal pumps, fans).

Variable torque - low with CT start [5], - medium with CT start [6] or - high with CT start [7], are selected if you need a greater breakaway torque than can be achieved with the three first characteristics.

NOTE

Load and slip compensation are not active if variable torque or special motor mode have been selected.

★ = factory setting. () = display text [] = value for use in communication via serial communication port
Select Special motor mode [8], if a special U/f setting is needed that is to be adapted to the present motor. The break points are set in parameters 423-428 Voltage/frequency.

NOTE
If a value set in the name-plate parameters 102-106 is changed, parameters 108 Stator resistance and 109 Stator reactance change automatically. Enter motor name plate data in sequence from parameter 102 to 106. The relationship between values are interdependent.

102 Motor power $P_{M,N}$
(MOTOR POWER)
Value: 0.25 - 22 kW
 Depends on unit

Function:
Here you must set a power value [kW] $P_{M,N}$, corresponding to the motor’s rated power.

Description of choice:
Set a value that matches the nameplate data on the motor. Settings between one size below and one size over the factory setting are possible.

<table>
<thead>
<tr>
<th>North American HP to kW Conversion Chart</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP</td>
</tr>
<tr>
<td>1/2</td>
</tr>
<tr>
<td>3/4</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1 1/2</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>7 1/2</td>
</tr>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

103 Motor voltage $U_{M,N}$
(MOTOR VOLTAGE)
Value:
For 200 V units: 50 - 999 V ★ 230 V
For 400 V units: 50 - 999 V ★ 400 V

Function:
This is where to set the rated motor voltage.

Description of choice:
Select a value that corresponds to the nameplate data on the motor, regardless of the adjustable frequency drive’s AC line voltage.

104 Motor frequency $f_{M,N}$
(MOTOR FREQUENCY)
Value: 24-1000 Hz ★ 50 Hz

Function:
This is where to select the rated motor frequency $f_{M,N}$.

Description of choice:
Select a value that corresponds to the nameplate data on the motor.
105 Motor current $I_{M,N}$

Value:

0,01 - I_{MAX} ★ Depends on choice of motor

Function:

The nominal, rated current of the motor $I_{M,N}$ forms part of the variable frequency drive calculation of features such as torque and motor thermal protection.

Description of choice:

Set a value that corresponds to the nameplate data on the motor. Set the motor current $I_{M,N}$ taking into account whether the motor is star-connected Y or delta-connected Δ.

106 Rated motor speed

Value:

100 - $f_{M,N} \times 60$ (max. 60000 rpm) ★ Depends on parameter 102 Motor power, P_{MN}

Function:

This is where to set the value that corresponds to the rated motor speed $n_{M,N}$ that can be seen from the nameplate data.

Description of choice:

Select a value that corresponds to the nameplate data on the motor.

NOTE

The max. value equals $f_{M,N} \times 60$. $f_{M,N}$ to be set in parameter 104 Motor frequency, f_{MN}.

107 Automatic motor tuning, AMT

Value:

★ Optimisation off (AMT OFF) [0]
Optimisation on (AMT START) [2]

Function:

- For AMT to define the motor parameters accurately, the correct nameplate data for the motor connected to the adjustable frequency drive must be keyed into parameters 102 to 106.
- Alarms will appear in the display if faults arise during tuning of the motor. See Warnings/alarms messages in this manual.
- As a rule, the AMT function can measure the R_S values for motors that are 1-2 sizes larger or smaller than the adjustable frequency drive’s nominal size.
- If you wish to interrupt automatic motor tuning, press the [STOP/RESET] key.

NOTE

AMT may not be performed on motors connected in parallel, nor may setup changes be made while AMT is running.

See Automatic motor tuning in this manual for the AMT procedure.

Description of choice:

Select Optimization on [2] as part of the AMT procedure if you want the adjustable frequency drive to perform automatic motor tuning.

108 Stator resistance R_S

Value:

0.000 - X.XXX ★ Depends on choice of motor

Function:

After setting of parameters 102-106 Nameplate data, a number of adjustments of various parameters is carried out automatically, including stator resistance R_S. A manually entered R_S must apply to a cold motor. The shaft performance can be improved by fine-tuning R_S and X_S, see procedure below.

NOTE

Parameters 108 Stator resistance R_S and 109 Stator reactance X_S are normally not to be changed if nameplate data has been set.

Description of choice:

R_S can be set as follows:
1. Use the factory settings of R_S which the adjustable frequency drive itself chooses on the basis of the motor nameplate data.
2. The value is stated by the motor supplier.
3. The value is obtained through manual measurements: R_S can be calculated by measuring the resistance $R_{PHASE-PHASE}$ between two phase terminals. Where $R_{PHASE-PHASE}$ is lower than 1-2 Ohms (typical for motors > 7.5 HP, 400 V), a special Ohm-meter should be used (Thomson-bridge or similar). $R_S = 0.5 \times R_{PHASE-PHASE}$.
4. R_S is set automatically when AMT has been completed. See parameter 107 Auto motor tuning.

109 Stator reactance X_S

Value:
0.00 - XXΩ

* Depends on choice of motor

Function:
After setting of parameters 102-106 Nameplate data, a number of adjustments of various parameters are made automatically, including stator reactance X_S. The shaft performance can be improved by fine-tuning R_S and X_S, see procedure below.

Description of choice:
X_S can be set as follows:

1. The value is stated by the motor supplier.
2. The value is obtained through manual measurements X_S is obtained by connecting a motor to electrical current and measuring the phase-phase voltage U_M and the idle current i_0. $X_S = \frac{U_m}{\sqrt{3} \times i_0}$
3. Use the factory settings of X_S which the variable frequency drive itself chooses on the basis of the motor nameplate data.

117 Resonance damping

Value:
OFF 100

* Off [OFF 100]

Description of choice:
Set the grade of Motor current [Imact] influence on the U/F ratio between 0% (OFF) and 100%.

Function:
It is possible to optimize the resonance damping in CT mode. The grade of the influence is adjusted in this parameter. The value may be set between 0% (OFF) and 100%. 100% corresponds to 50% reduction of U/F ratio. Default value is OFF.

Internal settings (fixed):
The resonance filter is active from 10% of nominal speed and above.
In this case 5Hz and above.
Speed to go from 0 to nominal flux level: 500ms
Speed to go from nominal to 0 flux level: 500 ms

Description of functionality:
The filter monitors the active motor current and changes the motor voltage according to the figure below. The filter reacts on levels referring to the nominal motor current.

If the active motor current is below 10%, the motor voltage will be decreased by the speed mentioned above until the voltage reaches the setting for Par. 117.
If the active motor current comes over 20% the voltage will be increased by the above-mentioned speed. If the active motor current reaches 40% the motor voltage will be increased immediately to normal motor voltage.
The reduction in motor voltage depends on the parameter 117 setting.
100% corresponds to 50% reduction of U/F ratio. Default value is OFF.

119 High start torque
Value:

0.0 - 0.5 sec. ★ 0.0 sec.

Function:

To ensure a high start torque approx. 1.8 x \(I_{INV} \) can be permitted for max. 0.5 sec. The current is, however, limited by the variable frequency drive’s (inverter’s) safety limit. 0 sec. corresponds to no high start torque.

Description of choice:

Set the necessary time for which a high start torque is required.

120 Start delay
Value:

0.0 - 10.0 sec. ★ 0.0 sec.

Function:

This parameter enables a delay of the start-up time after the conditions for start have been fulfilled. When the time has passed, the output frequency will start by ramping up to the reference.

Description of choice:

Set the necessary time before commencing to accelerate.

121 Start function
Value:

- DC hold during start delay time (DC HOLD/Delay TIME) [0]
- DC brake during start delay time (DC BRAKE/Delay TIME) [1]
- Coasting during start delay time (COAST/Delay TIME) [2]
- Start frequency/voltage clockwise (CLOCKWISE Operation) [3]
- Start frequency/voltage in reference direction (VERTICAL Operation) [4]

★ = factory setting. = display text [] = value for use in communication via serial communication port

Function:

This is where to choose the required mode during the start delay time (parameter 120 Start delay time).

Description of choice:

Select DC hold during start delay time [0] to energize the motor with a DC hold voltage during the start delay time. Set voltage in parameter 137 DC hold voltage.

Choose DC brake during start delay time [1] to energize the motor with a DC brake voltage during the start delay time. Set voltage in parameter 132 DC brake voltage.

Choose Coasting during start delay time [2] and the motor will not be controlled by the variable frequency drive during the start delay time (inverter turned off).

Choose Start frequency/voltage clockwise [3] to obtain the function described in parameter 130 Start frequency and 131 Voltage at start during start delay time. Regardless of the value assumed by the reference signal, the output frequency equals the setting in parameter 130 Start frequency and the output voltage will correspond to the setting in parameter 131 Voltage at start.

This functionality is typically used in hoist applications. It is used in particular in applications in which a cone anchor motor is applied, where the direction of rotation is to start clockwise followed by the reference direction.

Select Start frequency/voltage in reference direction [4] to obtain the function described in parameter 130 Start frequency and 131 Voltage at start during the start delay time. The direction of rotation of the motor will always follow in the reference direction. If the reference signal equals zero, the output frequency will equal 0 Hz, while the output voltage will correspond to the setting in parameter 131 Voltage at start. If the reference signal is different from zero, the output frequency will equal parameter 130 Start frequency and the output voltage will equal parameter 131 Voltage at start. This functionality is used typically for hoist applications with counterweight. It is used in particular for applications in which a cone anchor motor is applied. The cone anchor motor can break away using parameter 130 Start frequency and parameter 131 Voltage at start.
122 Function at stop

Value:
- **Coasting (COAST)** [0]
- **DC hold (DC HOLD)** [1]

Function:
This is where to choose the function of the variable frequency drive after the output frequency has become lower than the value in parameter 123. The min. frequency for activation of function at stop or after a stop command and when the output frequency has been ramped down to 0 Hz.

Description of choice:
Select Coasting [0] if the variable frequency drive is to 'let go' of the motor (inverter turned off). Select DC hold [1] if parameter 137 DC hold voltage is to be activated.

123 Min. frequency for activation of function at stop

Value:
0.1 - 10 Hz ★ 0.1 Hz

Function:
In this parameter, the output frequency is set at which the function selected in parameter 122 Function at stop is to be activated.

Description of choice:
Set the required output frequency.

NOTE
- If parameter 123 is set higher than parameter 130, then the start delay function (parameter 120 and 121) will be skipped.

NOTE
- If parameter 123 is set too high, and DC hold has been chosen in parameter 122, the output frequency will jump to the value in parameter 123 without ramping up. This may cause an overcurrent warning / alarm.

126 DC brake time

Value:
0 - 60 sec. ★ 10 sec

Function:
In this parameter, the DC brake time is set at which parameter 132 DC brake voltage is to be active.

Description of choice:
Set the required time.

127 DC brake cut-in frequency

Value:
0.0 (OFF) - par. 202
- Output frequency high limit, fMAX ★ OFF

Function:
In this parameter, the DC brake cut-in frequency is set at which the DC brake is to be activated in connection with a stop command.

Description of choice:
Set the required frequency.

128 Thermal motor protection

Value:
- No protection (NO PROTECTION) [0]
- Thermistor warning (THERMISTOR WARN) [1]
- Thermistor trip (THERMISTOR TRIP) [2]
- ETR warning 1 (ETR WARNING 1) [3]
- ETR trip 1 (ETR TRIP 1) [4]
- ETR warning 2 (ETR WARNING 2) [5]
- ETR trip 2 (ETR TRIP 2) [6]
- ETR warning 3 (ETR WARNING 3) [7]
- ETR trip 3 (ETR TRIP 3) [8]
- ETR warning 4 (ETR WARNING 4) [9]
- ETR trip 4 (ETR TRIP 4) [10]

Function:
The adjustable frequency drive can monitor the motor temperature in two different ways:
- Via a PTC thermistor that is mounted on the motor. The thermistor is connected between terminal 50
You can also program the adjustable frequency drive to give a warning signal via one of the digital outputs. Select ETR Trip 1-4 if you want a trip when the motor is overloaded according to the calculations.

NOTE
This function cannot protect the individual motors in the case of motors linked in parallel.

Description of choice:
- Set the required start frequency. It is a precondition that parameter 121 Start function, is set to Start frequency/voltage clockwise [3] or Start frequency voltage in reference direction [4] and that in parameter 120 Start delay a time is set and a reference signal is present.

NOTE
If parameter 123 is set higher than parameter 130, the start delay function (parameter 120 and 121) will be skipped.

131 Initial voltage

Value:

<table>
<thead>
<tr>
<th>Value</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 - 200.0 V</td>
<td>★</td>
</tr>
</tbody>
</table>

Function:
Initial voltage is active for the time set in parameter 120 Start delay, after a start command. This parameter can be used for example for lifting/dropping applications (conical anchor motors).
Description of choice:
Set the required voltage necessary to cut out the mechanical brake. It is assumed that parameter 121 Start function, is set to Start frequency/voltage clockwise [3] or Start frequency/voltage in reference direction [4] and that in parameter 120 Start delay a time is set, and that a reference signal is present.

Description of choice:
The factory setting will be suitable for most applications, the value may need to be increase gradually for high torque application.

⚠️ Warning: If the use of start voltage is exaggerated, this may lead to over-energizing and overheating of the motor and the variable frequency drive may cut out.

132 DC brake voltage

(DF Brake Voltage)

Value:
0 - 100% of max. DC brake voltage ★ 0%

Function:
In this parameter, the DC brake voltage is set which is to be activated at stop when the DC brake frequency set in parameter 127 DC brake cut-in frequency is reached, or if DC braking inverse is active via a digital input or via serial communication. Subsequently, the DC brake voltage will be active for the time set in parameter 126 DC brake time.

Description of choice:
To be set as a percentage value of the max. DC brake voltage, which depends on the motor.

133 Start voltage

(START VOLTAGE)

Value:
0.00 - 100.00 V ★ Depends on unit

Function:
A higher start torque can be obtained by increasing the start voltage. Small motors (< 1.0 HP) normally require a high start voltage.

Description of choice:
If the factory setting is not adequate, load compensation must be set to enable the motor to start at the given load.

⚠️ Warning: Should be set to 0% in connection with synchronous and parallel-coupled motors and in the case of quick load changes. Too high load compensation may lead to instability.

134 Load compensation

(LOAD COMPENSATION)

Value:
0.0 - 300.0% ★ 100.0%

Function:
In this parameter, the load characteristic is set. By increasing the load compensation, the motor is given an extra voltage and frequency supplement at increasing loads. This is used e.g. in motors/applications in which there is a big difference between the full-load current and idle-load current of the motor.

NOTE
If this value is set too high, the variable frequency drive may cut out because of overcurrent.

135 U/f-ratio

(U/F RATIO)

Value:
0.00 - 20.00 at Hz ★ Depends on unit

Function:
This parameter enables a linear shift in the ratio between output voltage (V) and output frequency (f) to ensure correct energizing of the motor and

★ = factory setting. () = display text [] = value for use in communication via serial communication port
thus optimum dynamics, accuracy and efficiency. The V/f-ratio only affects the voltage characteristic if Constant torque [1] has been selected in parameter 101 Torque characteristic.

Description of choice:
Change the V/f-ratio only if it is not possible to set the correct motor data in parameters 102-109. The value programmed in the factory settings is based on idle operation.

136 Slip compensation

Value:
-500% - +500% of rated slip compensation ★ 100%

Function:
Slip compensation is calculated automatically, on the basis of such data as the rated motor speed \(n_{RMN} \). In this parameter, the slip compensation can be fine-tuned, thereby compensating for tolerances on the value for \(n_{RMN} \). Slip compensation is only active if a selection has been made of Speedregulation, open loop [0] in parameter 100 Configuration and Constant torque [1] in parameter 101 Torque characteristic.

Description of choice:
Key in a % value.

137 DC hold voltage

Value:
0% - 100% of max. DC hold voltage ★ 0%

Function:
This parameter is used to keep the motor (holding torque) at start/stop.

Description of choice:
This parameter can only be used if a selection has been made of DC hold in parameter 121 Start function or 122 Function at stop. To be set as a percentage value of the max. DC hold voltage, which depends on the choice of motor.

138 Brake cut out value

Value:
0.5 - 132.0/1000.0 Hz ★ 3.0 Hz

Function:
Select the frequency at which the external brake is released, via the output defined in parameter 323 Relay output 1-3 or 341 Digital output, terminal 46.

Description of choice:
Set the required frequency.

139 Brake cut in frequency

Value:
0.5 - 132.0/1000.0 Hz ★ 3.0 Hz

Function:
Select the frequency at which the external brake is activated; this takes place via the output defined in parameter 323 Relay output 1-3 or 341 Digital output terminal 46.

Description of choice:
Set the required frequency.

140 Current, minimum value

Value:
0 % of Inom - 100 % of Inom ★ 0 %

Function:
This is where the user selects the minimum motor current running for the mechanical brake to be released. Current monitoring is only active from stop until the point when the brake is released.

Description of choice:
This is an extra safety precaution, aimed at guaranteeing that the load is not lost during start of a lifting/lowering operation.

★ = factory setting. () = display text [] = value for use in communication via serial communication port
142 Leakage reactance \(X_L \)

<table>
<thead>
<tr>
<th>LEAK. REACTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value:</td>
</tr>
<tr>
<td>0.000 - XXX,XXX Ω</td>
</tr>
</tbody>
</table>

Function:
After setting of parameters 102-106 Nameplate data, a number of adjustments of various parameter is made automatically, including the leakage reactance \(X_L \). The shaft performance can be improved by fine-tuning the leakage reactance \(X_L \).

NOTE
Parameter 142 The leakage reactance \(X_L \) is normally not to be changed if the nameplate data have been set, parameters 102-106.

Description of choice:
\(X_L \) can be set as follows:
1. The value is stated by the motor supplier.
2. Use the factory settings of \(X_L \) which the variable frequency drive itself chooses on the basis of the motor nameplate data.

143 Internal fan control

<table>
<thead>
<tr>
<th>FAN CONTROL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value:</td>
</tr>
<tr>
<td>★Automatic (AUTOMATIC) [0]</td>
</tr>
<tr>
<td>Always switched on (ALWAYS ON) [1]</td>
</tr>
<tr>
<td>Always switched off (ALWAYS OFF) [2]</td>
</tr>
</tbody>
</table>

Function:
This parameter can be set so that the internal fan is automatically switched on and off. You can also set the internal fan to be permanently switched on or off.

Description of choice:
If Automatic [0] is selected, the internal fan is switched on or off depending on the ambient temperature and the loading of the adjustable frequency drive. If Always switched on [1] or Always switched off [2] is selected, the internal fan will be permanently switched on or off, respectively.

NOTE
If Always switched off [2] is selected in combination with high switch frequency, long motor cables or high output power, the adjustable frequency drive’s life span is reduced. This applies in particular to 1.5, 2, 4 and 5 HP units.

144 Gain AC brake

<table>
<thead>
<tr>
<th>GAIN AC BRAKE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value:</td>
</tr>
<tr>
<td>1.00 - 1.50</td>
</tr>
<tr>
<td>★ 1.30</td>
</tr>
</tbody>
</table>

Function:
This parameter is used to set the AC brake. Using par. 144 it is possible to adjust the size of the generator torque that can be applied to the motor without the intermediate circuit voltage exceeding the warning level.

Description of choice:
The value is increased if a greater possible brake torque is required. If 1.0 is selected, this corresponds to the AC brake being inactive.

NOTE
If the value in par. 144 is increased, the motor current will simultaneously increase significantly when generator loads are applied. The parameter should therefore only be changed if it is guaranteed during measurement that the motor current in all operating situations will never exceed the maximum permitted current in the motor. Please note: that the current cannot be read out from the display.

146 Reset voltage vector

<table>
<thead>
<tr>
<th>RESET VECTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value:</td>
</tr>
<tr>
<td>★Off (OFF) [0]</td>
</tr>
<tr>
<td>Reset (RESET) [1]</td>
</tr>
</tbody>
</table>

Function:
When the voltage vector is reset it is set to the same starting point each time a new process commences.

Description of choice:
Select reset (1) when running unique processes each time they arise. This will enable repetitive precision when stopping to be improved. Select Off (0) for example for lifting/lowering operations or synchronous
motors. It is an advantage that the motor and the variable frequency drive are always synchronized.
References & Limits

200 Output frequency range

Value:
- Only clockwise, 0 - 132 Hz (132 HZ CLOCKWISE) [0]
- Both directions, 0 - 132 Hz (132 HZ BOTH DIRECT) [1]
- Anti-clockwise only, 0 - 132 Hz (132 HZ COUNTER CLOCK) [2]
- Clockwise only, 0 - 1000 Hz (1000 HZ CLOCK WISE) [3]
- Both directions, 0 - 1000 Hz (1000 HZ BOTH DIRECT) [4]
- Counter-clockwise only, 0 - 1000 Hz (1000 HZ COUNTER CLOCK) [5]

Function:
This parameter guarantees protection against unwanted reverse. Furthermore, the maximum output frequency can be selected that is to apply regardless of the settings of other parameters. This parameter has no function if Process regulation, closed loop has been selected in parameter 100 Configuration.

Description of choice:
Select the required direction of rotation as well as the maximum output frequency. Please note that if Clockwise only [0]/[3] or Counter-clockwise only [2]/[5] is selected, the output frequency will be limited to the range \(f_{MIN}-f_{MAX}\). If Both directions [1]/[4] is selected, the output frequency will be limited to the range \(\pm f_{MAX}\) (the minimum frequency is of no significance).

201 Output frequency low limit, \(f_{MIN}\)

Value:
0.0 - \(f_{MAX}\) ★ 0.0 Hz

Function:
In this parameter, a minimum motor frequency limit can be selected that corresponds to the minimum speed at which the motor is allowed to run. If Both directions has been selected in parameter 200 Output frequency range, the minimum frequency is of no significance.

Description of choice:
The value chosen can range from 0.0 Hz to the frequency set in parameter 202 Output frequency high limit, \(f_{MAX}\).

202 Output frequency high limit, \(f_{MAX}\)

Value:
\(f_{MIN} - 132/1000\) Hz (par. 200 Output frequency range) ★ 132 Hz

Function:
In this parameter, a maximum output frequency limit can be selected that corresponds to the highest speed at which the motor is allowed to run.

NOTE
The output frequency of the variable frequency drive can never assume a value higher than 1/10 of the switching frequency (parameter 411 Switching frequency).

Description of choice:
A value can be selected from \(f_{MIN}\) to the value chosen in parameter 200 Output frequency range.

203 Reference range

Value:
- Min. reference - Max. reference (MIN - MAX) [0]
- Max. reference - Max. reference (-MAX - +MAX) [1]

Function:
In this parameter you select whether the reference signal must be positive or whether it can be both positive and negative.
positive and negative. The minimum limit may be a negative value, unless in parameter 100 Configuration a selection has been made of Speed regulation, closed loop. You should select Min ref. - Max. ref. [0], if Process regulation, closed loop [3] has been selected in parameter 100 Configuration.

Description of choice:
Select the required range.

204 Minimum reference, RefMIN

Value:
- Par. 100 Config. = Open loop [0].
 -100,000.000 - par. 205 RefMAX ★ 0.000 Hz
- Par. 100 Config. = Closed loop [1][3].
 -Par. 414 Minimum feedback - par. 205 RefMAX ★ 0.000 rpm/par 416

Function:
Minimum reference is an expression of the minimum possible value of the total of all references. If in parameter 100 Configuration, Speed regulation, closed loop [1] or Process regulation, closed loop [3] is selected, the minimum reference is limited by parameter 414 Minimum feedback. Minimum reference is ignored if the local reference is active.

The reference unit can be defined from the following table:

<table>
<thead>
<tr>
<th>Par. 100 Configuration</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open loop [0]</td>
<td>Hz</td>
</tr>
<tr>
<td>Speed reg, closed loop [1]</td>
<td>rpm</td>
</tr>
<tr>
<td>Process reg, closed loop [3]</td>
<td>Par. 416</td>
</tr>
</tbody>
</table>

Description of choice:
The minimum reference is preset if the motor has to run at a minimum speed, regardless of whether the resulting reference is 0.

205 Maximum reference, RefMAX

Value:
- Par. 100 Config. = Open loop [0].
 Par. 204 RefMIN - 1000.000 Hz ★ 50.000 Hz
- Par. 100 Config. = Closed loop [1][3].
 Par. 204 RefMIN - Par. 415 Max. feedback ★ 50.000 rpm/par 416

Function:
The maximum reference gives the highest value that can be assumed by the sum of all references. If Closed loop [1][3] is selected in parameter 100 Configuration the maximum reference cannot exceed the value in parameter 415 Maximum feedback. Maximum reference is ignored if the local reference is active.

The reference unit can be defined from the following table:

<table>
<thead>
<tr>
<th>Par. 100 Configuration</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open loop [0]</td>
<td>Hz</td>
</tr>
<tr>
<td>Speed reg, closed loop [1]</td>
<td>rpm</td>
</tr>
<tr>
<td>Process reg, closed loop [3]</td>
<td>Par. 416</td>
</tr>
</tbody>
</table>

Description of choice:
Maximum reference is set, if the speed of the motor is to be max. the set value, regardless of whether the resulting reference is greater than the maximum reference.

206 Ramp type

Value:
- ★Linear (LINEAR) [0]
- Sine shaped (S-SHAPED) [1]
- Sine2 shaped (S-SHAPED 2) [2]

Function:
You can choose between a linear, a sine-shaped and a sine2-shaped ramp process.

Description of choice:
Select the required ramp type depending on requirements for the acceleration/deceleration process.
207 Ramp-up time 1
(RAMP-UP TIME 1)

Value:
0.02 - 3600.00 sec ★ 3.00 sec (VLT 2803-2875)
10.00 sec (VLT 2880-2882)

Function:
The ramp-up time is the acceleration time from 0 Hz to the rated motor frequency $f_{M,N}$ (parameter 104 Motor frequency, $f_{M,N}$). It is assumed that the output current will not reach the current limit (set in parameter 221 Current limit I_{LM}).

Description of choice:
Set the required ramp-up time.

208 Ramp-down time 1
(RAMP-DOWN TIME 1)

Value:
0.02 - 3600.00 sec ★ 3.00 sec (VLT 2803-2875)
10.00 sec (VLT 2880-2882)

Function:
The ramp-down time is the deceleration time from the rated motor frequency $f_{M,N}$ (parameter 104 Motor frequency, $f_{M,N}$) to 0 Hz, provided no overvoltage arises in the inverter because of generating operation of the motor.

Description of choice:
Set the required ramp-down time.

209 Ramp-up time 2
(2 RAMP-UP TIME)

Value:
0.02 - 3600.00 sec ★ 3.00 sec (VLT 2803-2875)
10.00 sec (VLT 2880-2882)

Function:
See description of parameter 207 Ramp-up time 1.

Description of choice:
Set the required ramp-up time. Shift from ramp 1 to ramp 2 by activating Ramp 2 via a digital input.

210 Ramp-down time 2
(RAMP-DOWN TIME 2)

Value:
0.02 - 3600.00 sec ★ 3.00 sec (VLT 2803-2875)
10.00 sec (VLT 2880-2882)

Function:
See description of parameter 208 Ramp-down time 1.

Description of choice:
Set the required ramp-down time. Shift from ramp 1 to ramp 2 by activating Ramp 2 via a digital input.
211 Jog ramp time

Value:
0.02 - 3600.00 sec. ★ 3.00 sec (VLT 2803-2875)
10.00 sec (VLT 2880-2882)

Function:
The jog ramp time is the acceleration/deceleration time from 0 Hz to the rated motor frequency \(f_{M,N} \) (parameter 104 Motor frequency \(f_{M,N} \)). It is assumed that the output current will not reach the current limit (set in parameter 221 Current limit \(I_{LM} \)).

Description of choice:
Set the required ramp time.

213 Jog frequency

Value:
0.0 - Par. 202 Output frequency high limit, \(f_{MAX} \) ★ 10.0 Hz

Function:
Jog frequency \(f_{JOG} \) means a fixed output frequency that the variable frequency drive supplies to the motor when the Jog function is activated. Jog can be activated via the digital inputs, serial communication or via the LCP control panel, on the condition that this is active in parameter 015 Local jog.

Description of choice:
Set the required frequency.

212 Quick stop ramp-down time

Value:
0.02 - 3600.00 sec. ★ 3.00 sec (VLT 2803-2875)
10.00 sec (VLT 2880-2882)

Function:
The quick-stop ramp-down time is the deceleration time from the rated motor frequency to 0 Hz, provided no overvoltage arises in the inverter because of generating operation of the motor, or if the generated current exceeds the current limit in parameter 221 Current limit \(I_{LM} \). Quick stop is activated via one of the digital inputs or the serial communication.

Description of choice:
Set the required ramp-down time.

214 Reference function

Value:
★Sum (SUM) [0]
Relative (RELATIVE) [1]
External/preset (EXTERNAL/PRESET) [2]

Function:
It is possible to define how preset references are to be added to the other references; for this purpose, use Sum or Relative. It is also possible by using the External/preset to select whether a shift between external references and preset references is required. External reference is the sum of the analog references, pulse references and any references from serial communication.

Description of choice:
If Sum [0] is selected, one of the adjusted preset references (parameters 215-218 Preset reference) is summarized as a percentage of the reference range (\(Ref_{MIN} - Ref_{MAX} \)), added to the other external references.

If Relative [1] is selected, one of the added preset references (parameters 215-218 Preset reference) is summarized as a percentage of the sum of present external references.

If External/preset [2] is selected, it is possible via a digital input to shift between external references or preset references. Preset references will be a percentage value of the reference range.
NOTE
If Sum or Relative is selected, one of the preset references will always be active. If the preset references are to be without influence, they must be set to 0% (factory setting).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>215</td>
<td>Preset reference 1 (PRESET REF. 1)</td>
</tr>
<tr>
<td>216</td>
<td>Preset reference 2 (PRESET REF. 2)</td>
</tr>
<tr>
<td>217</td>
<td>Preset reference 3 (PRESET REF. 3)</td>
</tr>
<tr>
<td>218</td>
<td>Preset reference 4 (PRESET REF. 4)</td>
</tr>
</tbody>
</table>

Value:
-100.00% - +100.00%

Function:
Four different preset references can be programmed in parameters 215-218 Preset reference. The preset reference is stated as a percentage of the reference range (RefMIN - RefMAX) or as a percentage of the other external references, depending on the choice made in parameter 214 Reference function. The choice between preset references can be made via the digital inputs or via serial communication.

Description of choice:
Set the preset reference(s) that is/are to be the options.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>219</td>
<td>Catch up/ Slow down reference (CATCH UP/SLW DWN)</td>
</tr>
</tbody>
</table>

Value:
0.00 - 100.00% of the given reference

Function:
In this parameter, the percentage value can be set which will either be added to or deducted from the remote-controlled references. The remote-controlled reference is the sum of preset references, analog references, pulse reference and any references from serial communication.

Description of choice:
If Catch up is active via a digital input, the percentage value in parameter 219 Catch up/Slow down reference will be added to the remote-controlled reference. If Slow down is active via a digital input, the percentage value in parameter 219 Catch up/Slow down reference will be deducted from the remote-controlled reference.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>221</td>
<td>Current limit, I_{LM} (CURRENT LIMIT)</td>
</tr>
</tbody>
</table>

Value:
0 - XXX.X % of par. 105 ★ 160 %

Function:
In this parameter, the maximum output current I_{LM} is set. The factory-set value corresponds to the maximum output current I_{MAX}. If the current limit is to be used as motor protection, set the rated motor current. If the current limit is set above 100% (the rated output current of the variable frequency drive, I_{INV}), the variable frequency drive can only handle a load intermittently, i.e. for short periods at a time. After the load has been higher than I_{INV}, it must be ensured that for a period the load is lower than I_{INV}. Please note that if the current limit is set at a lower value than I_{INV}, the acceleration torque will be reduced to the same extent.

Description of choice:
Set the required maximum output current I_{LM}.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>223</td>
<td>Warning: Low current, I_{LOW} (WARN. CURRENT LO)</td>
</tr>
</tbody>
</table>

Value:
0.0 - par. 224 Warning: High current, I_{HIGH} ★ 0.0 A

Function:
If the output current falls below the preset limit I_{LOW} a warning is given. Parameters 223-228 Warning functions are out of function during ramp-up after a start command and after a stop command or during stop. The warning functions are activated when the output frequency reaches the resulting reference. The signal outputs can be programmed to give a warning signal via terminal 46 and via the relay output.
Description of choice:
The lower signal limit of the output current I_{LOW} must be programmed within the normal working range of the unit.

224 Warning: High current, I_{HIGH}
(WARN. CURRENT HI)
Value:
0 - I_{MAX} ★ I_{MAX}
Function:
If the output current exceeds the preset limit I_{HIGH} a warning is given.
Parameters 223-228 Warning functions do not work during ramp-up after a start command and after stop command or during stop. The warning functions are activated when the output current has reached the resulting reference. The signal outputs can be programmed to give a warning signal via terminal 46 and via the relay output.

Description of choice:
The output current’s upper signal limit I_{HIGH} must be programmed within the normal operating range of the variable frequency drive. See drawing at parameter 223 Warning: Low current, I_{LOW}.

225 Warning: Low frequency, f_{LOW}
(WARN. FREQ. LOW)
Value:
0.0 - par. 226
Warn.: High frequency, f_{HIGH} ★ 0.0 Hz
Function:
If the output frequency falls below the preset limit f_{LOW}, a warning is given.
Parameters 223-228 Warning functions are out of function during ramp-up after a start command and after stop command or during stop. The warning functions are activated when the output frequency has reached the resulting reference. The signal outputs can be programmed to give a warning signal via terminal 46 and via the relay output.

Description of choice:
The lower signal limit of the output frequency f_{LOW} must be programmed within the normal operating range of the variable frequency drive. See drawing at parameter 223 Warning: Low current, I_{LOW}.

226 Warning: High frequency f_{HIGH}
(WARN. FREQ.HIGH)
Value:
Par. 200 Frequency range = 0-132 Hz [0]/[1].
par. 225 f_{LOW} - 132 Hz ★ 132.0 Hz
Par. 200 Frequency range = 0-1000 Hz [2]/[3].
par. 226 f_{LOW} - 1000 Hz ★ 132.0 Hz
Function:
If the output frequency exceeds the preset limit f_{HIGH} a warning is given.
Parameters 223-228 Warning functions do not work during ramp-up after a start command and after stop command or during stop. The warning functions are activated when the output frequency has reached the resulting reference. The signal outputs can be programmed to give a warning signal via terminal 46 and via the relay output.

Description of choice:
The output frequency’s upper signal limit f_{HIGH} must be programmed within the variable frequency drive’s normal operating range. See drawing at parameter 223 Warning: Low current, I_{LOW}.
normal operating range. See drawing at parameter 223 Warning: Low current, \(I_{LOW} \).

227 Warning: Low feedback, FBLOW
(WARN.FEEDB. LOW)

Value:
-100,000.000 - par. 228 Warn.: FBHIGH ★ -4000.000

Function:
If the feedback signal falls below the preset limit FBLOW, a warning is given. Parameters 223-228 Warning functions are out of function during ramp-up after a start command and after a stop command or during stop. The warning functions are activated when the output frequency has reached the resulting reference. The signal outputs can be programmed to give a warning signal via terminal 46 and via the relay output. The unit for feedback in Closed loop is programmed in parameter 416 Process units.

Description of choice:
Set the required value within the feedback range (parameter 414 Minimum feedback, FBMIN and 415 Maximum feedback, FBMAX).

228 Warning: High feedback, FBHIGH
(WARN.FEEDB HIGH)

Value:
Par. 227 Warn.: FBLOW - 100,000.000 ★ 4000.000

Function:
If the feedback signal gets above the preset limit FBHIGH, a warning is given. Parameters 223-228 Warning functions are out of function during ramp-up after a start command and after a stop command or during stop. The warning functions are activated when the output frequency has reached the resulting reference. The signal outputs can be programmed to give a warning signal via terminal 46 and via the relay output. The unit for feedback in Closed loop is programmed in parameter 416 Process units.

Description of choice:
Set the required value within the feedback range (parameter 414 Minimum feedback, FBMIN and 415 Maximum feedback, FBMAX).

229 Frequency bypass, bandwidth
(FREQ BYPASS B.W.)

Value:
0 (OFF) - 100 Hz ★ 0 Hz

Function:
Some systems call for some output frequencies to be avoided because of mechanical resonance problems in the system. In parameters 230-231 Frequency bypass these output frequencies can be programmed. In this parameter a bandwidth can be defined on either side of these frequencies.

Description of choice:
The frequency set in this parameter will be centered around parameters 230 Frequency bypass 1 and 231 Frequency bypass 2.

230 Frequency bypass 1 (FREQ. BYPASS 1)

Value:
0 - 1000 Hz ★ 0.0 Hz

Function:
Some systems call for some output frequencies to be avoided because of mechanical resonance problems in the system.

Description of choice:
Enter the frequencies to be avoided. See also parameter 229 Frequency bypass, bandwidth.

231 Frequency bypass 2 (FREQ. BYPASS 2)

Value:
0 - 1000 Hz ★ 0.0 Hz

Function:
Some systems call for some output frequencies to be avoided because of mechanical resonance problems in the system.

Description of choice:
Enter the frequencies to be avoided. See also parameter 229 Frequency bypass, bandwidth.
Inputs and Outputs

<table>
<thead>
<tr>
<th>Digital inputs</th>
<th>Term. no.</th>
<th>18 (su-per)</th>
<th>19 (su-per)</th>
<th>27</th>
<th>29</th>
<th>33</th>
</tr>
</thead>
<tbody>
<tr>
<td>par. no.</td>
<td>302</td>
<td>303</td>
<td>304</td>
<td>305</td>
<td>307</td>
<td></td>
</tr>
</tbody>
</table>

Value:

- **No function** (NO OPERATION) [0] [0] [0] [0] ★ [0]
- **Reset** (RESET) [1] [1] [1] [1] [1]
- **Coasting stop inverse** (MOTOR COAST INVERSE) [2] [2] [2] [2] [2]
- **Reset and coating inverse** (RESET AND COAST INV.) [3] [3] ★ [3] [3]
- **DC braking inverse** (DC-BRAKE INVERSE) [5] [5] [5] [5] [5]
- **Start** (Start) ★ [7] [7] [7] [7] [7]
- **Pulse start** (LATCHED START) [8] [8] [8] [8] [8]
- **Reverse** (Reverse) [9] ★ [9] [9] [9] [9]
- **Reverse and start** (START REVERSE) [10] [10] [10] [10] [10]
- **Start counter-clockwise** (ENABLE REVERSE) [12] [12] [12] [12] [12]
- **Jog** (JOGGING) [13] [13] [13] ★ [13] [13]
- **Freeze reference** (Freeze reference) [14] [14] [14] [14] [14]
- **Freeze output frequency** (FREEZE OUTPUT) [15] [15] [15] [15] [15]
- **Speed up** (SPEED UP) [16] [16] [16] [16] [16]
- **Slow down** (SPEED DOWN) [17] [17] [17] [17] [17]
- **Catch-up** (CATCH-UP) [19] [19] [19] [19] [19]
- **Slow-down** (Slow-down) [20] [20] [20] [20] [20]
- **Ramp 2** (RAMP 2) [21] [21] [21] [21] [21]
- **Preset ref., LSB** (PRESET REF., LSB) [22] [22] [22] [22] [22]
- **Preset ref., msb** (PRESET REF., MSB) [23] [23] [23] [23] [23]
- **Preset reference on** (PRESET REFERENCE ON) [24] [24] [24] [24] [24]
- **Thermistor** (THERMISTOR) [25] [25] [25] [25] [25]
- **Precise stop, inverse** (PRECISE STOP INV.) [26] [26] [26] [26] [26]
- **Precise start/stop** (PRECISE START/STOP) [27] [27] [27] [27] [27]
- **Pulse reference** (PULSE REFERENCE) [28] [28] [28] [28] [28]
- **Pulse feedback** (PULSE FEEDBACK) [29] [29] [29] [29] [29]
- **Pulse input** (PULSE INPUT) [30] [30] [30] [30] [30]
- **Selection of Setup, lsb** (SELECT SETUP LSB) [31] [31] [31] [31] [31]
- **Selection of Setup, msb** (SELECT SETUP MSB) [32] [32] [32] [32] [32]
- **Reset and start** (RESET AND START) [33] [33] [33] [33] [33]
- **Pulse counter start** (PULSE COUNTER START) [34] [34] [34] [34] [34]

1. All functions on terminal 18 and 19 are controlled by an interrupter, which means that the repetitive accuracy of the response time is constant. Can be used for start/stop, setup switch and especially for changing digital preset, i.e. to obtain a reproduceable stop point when using creep speed. For further information see VLT 2800 Precise Stop Instruction, MI.28.CX.02.

★ = factory setting. () = display text [] = value for use in communication via serial communication port.
Function:
In these parameters 302-307 Digital inputs it is possible to choose between the different enabled functions related to the digital inputs (terminals 18-33).

Description of choice:
No operation is selected if the variable frequency drive is not to react to signals transmitted to the terminal.

Reset resets the variable frequency drive after an alarm; however, a few alarms cannot be reset (trip locked) without first disconnecting the electrical supply and reconnecting it. See table under List of warnings and alarms. Reset is activated on the leading edge of the signal.

Coasting stop inverse is used for making the variable frequency drive "let go" of the motor immediately (output transistors are "turned off"), which means that the motor runs freely to stop. Logic '0' leads to coasting to stop.

Reset and coasting inverse are used to activate motor coast simultaneously with reset. Logical '0' means motor coast stop and reset. Reset is activated on the falling edge.

Quick stop inverse is used for activating the quick-stop ramp down set in parameter 212 Quick stop ramp-down time. Logic '0' leads to quick stop.

DC-braking inverse is used for stopping the motor by energizing it with a DC voltage for a given time, see parameters 126, 127 and 132 DC brake. Please note that this function is only active if the value in parameter 126 DC braking time and 132 DC brake voltage is different from 0. Logic '0' leads to DC braking.

Start counterclockwise is used if you want the motor shaft only to be able to rotate counterclockwise when started. Should not be used for Process regulation, closed loop. See also parameter 200 Output frequency range/direction.

Start clockwise is used if you want the motor shaft only to be able to rotate clockwise when started. Should not be used for Process regulation, closed loop.

Latched start, if a pulse is applied for min. 14 ms, the variable frequency drive will start the motor, provided no stop command has been given. The motor can be stopped by briefly activating Stop inverse.

Reversing is used for changing the direction of rotation of the motor shaft. Logic '0' will not lead to reverse. Logic '1' will lead to reverse. The reverse signal only changes the direction of rotation, it does not activate the start. Is not active at Process regulation, closed loop. See also parameter 200 Output frequency range/direction.

Reverse and start is used for start/stop and for reverse with the same signal. No active start command is allowed at the same time. Acts as latch start reverse, provided latch start has been chosen for terminal 18. Is not active for Process regulation, closed loop. See also parameter 200 Output frequency range/direction.

Jog is used to override the output frequency to the jog frequency set in parameter 213 Jog frequency. Jog is active regardless of whether a start command has been given, yet not when Coast stop, Quick-stop or DC braking are active.

Freeze reference freezes the present reference. The reference can now only be changed via Speed up and Slow down. If freeze reference is active, it will be saved after a stop command and in the event of electrical failure.

None of the stop commands mentioned above are to be used as repair switches. Note that the variable frequency drive has more voltage inputs than L1, L2 and L3 when the DC bus terminals are used. Check that all voltage inputs are disconnected and that the prescribed time (4 mins.) has passed before repair work is commenced.

Start is selected if a start/stop command is required. Logic '1' = start, logic '0' = stop.
Freeze output freezes the present output frequency (in Hz). The output frequency can now only be changed via Speed up and Slow down.

NOTE
If Freeze output is active the variable frequency drive can only be stopped if you select Motor coast, Quick stop or DC braking via a digital input.

Speed up and **Slow down** are selected if digital control of the speed up/slow down is required. This function is only active if Freeze reference or Freeze output frequency has been selected.

If **Speed up** is active the reference or output frequency will be increased, and if **Speed down** is active the reference or output frequency will be reduced. The output frequency is changed via the preset ramp times in parameters 209-210 Ramp 2.

One pulse (logic ‘1’ minimum high for 14 ms and a minimum break time of 14 ms) will lead to a speed change of 0.1 % (reference) or 0.1 Hz (output frequency). Example:

<table>
<thead>
<tr>
<th>Term.</th>
<th>Term.</th>
<th>Freeze ref/</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>33</td>
<td>freeze outp.</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>No speed change</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Speed up</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Slow down</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Slow down</td>
</tr>
</tbody>
</table>

Freeze reference can be changed even if the variable frequency drive has stopped. The reference will also be saved if the AC lines are disconnected.

Catch-up/Slow-down is selected if the reference value is to be increased or reduced by a programmable percentage value set in parameter 219 Catch-up/Slow-down reference.

<table>
<thead>
<tr>
<th>Slow-down</th>
<th>Catch-up</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Unchanged speed</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Increase by % value</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Reduce by % value</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Reduce by % value</td>
</tr>
</tbody>
</table>

Ramp 2 is selected if a shift between ramp 1 (parameters 207-208) and ramp 2 (parameters 209-210) is required. Logic ‘0’ leads to ramp 1 and logic ‘1’ leads to ramp 2.

Preset reference, lsb and Preset reference, msb makes it possible to select one of the four preset references, see the table below:

<table>
<thead>
<tr>
<th>Preset ref.</th>
<th>Preset ref.</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>msb</td>
<td>lsb</td>
<td>Preset ref. 1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>Preset ref. 2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Preset ref. 3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Preset ref. 4</td>
</tr>
</tbody>
</table>

Preset reference on is used for shifting between remote-controlled reference and preset reference. It is assumed that External/preset [2] has been selected in parameter 214 Reference function. Logic ‘0’ = remote-controlled references are active, logic ‘1’ = one of the four preset references is active, as can be seen from the table above.

Thermistor is to be selected if a possibly integrated thermistor in the motor is to be able to stop the variable frequency drive if the motor overheats. The cut-out value is 3 kΩ.

If a motor features a Klixon thermal switch instead, this can also be connected to the input. If motors operate in parallel, the thermistors/thermal switches can be connected in series (total resistance lower than 3 kΩ). Parameter 128 Motor thermal protection must be programmed for Thermistor warning [1] or Thermistor trip [2] and the thermistor is to be connected between a digital input and terminal 50 (+ 10 V supply).
Precise stop, inverse is selected to obtain a high degree of accuracy when a stop command is repeated. A logic 0 means that the motor speed is ramped down to stop via the selected ramp.

Precise start/stop is selected to obtain a high degree of accuracy when a start and stop command is repeated.

Pulse reference is selected if the reference signal applied is a pulse train (frequency). 0 Hz corresponds to parameter 204 Minimum reference, RefMIN. The frequency set in parameter 327 Pulse reference/feedback corresponds to parameter 205 Maximum reference RefMAX.

Pulse feedback is selected if the feedback signal used is a pulse train (frequency). In parameter 327 Pulse reference/feedback the maximum pulse feedback frequency is set.

Pulse input is selected if a specific number of pulses must lead to a Precise stop, see parameter 343 Precise stop and parameter 344 Counter value.

Selection of Setup, Isb and Selection of Setup, msb gives the possibility to select one of the four setups. It is, however, a condition that parameter 004 is set to Multisetup.

Reset and start can be used as a start function. If 24 V are connected to the digital input, this will cause the variable frequency drive to reset and the motor will ramp up to the preset reference.

Pulse counter start is used to start a counter stop sequence with a pulse signal. The pulse width must at least be 14 ms and not longer than the count period. See also parameter 343 and the instruction, MI28CXYY.

Description of choice:

No function [0]. Is selected if the variable frequency drive is not to react to signals connected to the terminal. Reference [1]. If this function is selected, the reference can be changed by means of an analog reference signal. If reference signals are connected to more than one input, these reference signals must be added up. If a voltage feedback signal is connected, select Feedback [2] on terminal 53.

308 Terminal 53, analog input voltage

- **Value:**
 - No function (NO OPERATION) [0]
 - ★REFERENCE % (REFERENCE %) [1]
 - Feedback (FEEDBACK) [2]

- **Function:**
 In this parameter it is possible to select the function required to be connected to terminal 53. Scaling of the input signal is made in parameter 309 Terminal 53, min. scaling and parameter 310 Terminal 53, max. scaling.

 ★ = factory setting. () = display text [] = value for use in communication via serial communication port
314 Terminal 60, analog input current

(Al [MA] 60 FUNCT)

Value:
★ No function (NO OPERATION)	[0]
REFERENCE % (REFERENCE %)	[1]
Feedback (FEEDBACK)	[2]

Function:
This parameter allows a choice between the different functions available for the input, terminal 60. Scaling of the input signal is effected in parameter 315 Terminal 60, min. scaling and parameter 316 Terminal 60, max. scaling.

Description of choice:
No function [0]. Is selected if the variable frequency drive is not to react to signals connected to the terminal. Reference [1]. If this function is selected, the reference can be changed by means of an analog reference signal. If reference signals are connected to more than one input, these reference signals must be added up. If one current feedback signal is connected, select Feedback [2] on terminal 60.

315 Terminal 60 Min. scaling

(AI 60 SCALE LOW)

Value:
0.0 - 20.0 mA ★ 0.0 mA

Function:
In this parameter you can set the signal value that will correspond to the minimum reference or minimum feedback, parameter 204 Minimum reference, RefMIN / 414 Minimum feedback, FBMIN.

Description of choice:
Set the required current value. If the Time out function is to be used (parameter 317 Time out and 318 Function after time out) the value set must be higher than 2 mA.

316 Terminal 60 Max. scaling

(AI 60 SCALE HIGH)

Value:
0.0 - 20.0 mA ★ 20.0 mA

Function:
This parameter is used for setting the signal value that is to correspond to the maximum reference value, parameter 205 Maximum reference value, RefMAX.

Description of choice:
Set the required current value.

317 Time out

(LIVE ZERO TIME O)

Value:
1 - 99 sec. ★ 10 sec.

Function:
If the signal value of the reference or feedback signal connected to one of the input terminals 53 or 60 falls below 50 % of the minimum scaling for a period longer than the time set, the function selected in parameter 318 Function after time out will be activated. This function is only active if in parameter 309 Terminal 53, min. scaling a value higher than 1 Volt has been selected, or if in parameter 315 Terminal 60, min. scaling a value higher than 2 mA has been selected.

Description of choice:
Set the required time.

318 Function after time out

(LIVE ZERO FUNCT.)

Value:
★ No operation (NO OPERATION)	[0]
Freeze output frequency (FREEZE OUTPUT FREQ.)	[1]
Stop (STOP)	[2]
Jog (JOG)	[3]
Max. speed (MAX SPEED)	[4]
Stop and trip (STOP AND TRIP)	[5]

Function:
This parameter allows a choice of the function to be activated after the expiration of the Time out (parameter 317 Time out). If a time-out function occurs at the same time as a bus time-out function (parameter

★ = factory setting. () = display text [] = value for use in communication via serial communication port
513 Bus time interval function, the time-out function in parameter 318 will be activated.

Description of choice:

The output frequency of the variable frequency drive can be:
- frozen at the present frequency [1]
- overruled to stop [2]
- overruled to jog frequency [3]
- overruled to max. output frequency [4]
- overruled to stop with subsequent trip [5]

319 Analog output terminal 42
(AO 42 FUNCTION)

Value:

<table>
<thead>
<tr>
<th>No function (NO OPERATION)</th>
<th>[0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>External reference min.-max. 0-20 mA (REF MIN-MAX = 0-20 MA)</td>
<td>[1]</td>
</tr>
<tr>
<td>External reference min.-max. 4-20 mA (REF MIN-MAX = 4-20 MA)</td>
<td>[2]</td>
</tr>
<tr>
<td>Feedback min.-max. 0-20 mA (FB MIN-MAX = 0-20 MA)</td>
<td>[3]</td>
</tr>
<tr>
<td>Feedback min.-max. 4-20 mA (FB MIN-MAX = 4-20 MA)</td>
<td>[4]</td>
</tr>
<tr>
<td>Output frequency 0-max 0-20 mA (0-FMAX = 0-20 MA)</td>
<td>[5]</td>
</tr>
<tr>
<td>Output frequency 0-max 4-20 mA (0-FMAX = 4-20 MA)</td>
<td>[6]</td>
</tr>
<tr>
<td>*/Output current 0-IINV 0-20 mA (0-IMAX = 0-20 MA)</td>
<td>[7]</td>
</tr>
<tr>
<td>Output current 0-IINV 4-20 mA (0-PNOM = 4-20 MA)</td>
<td>[8]</td>
</tr>
<tr>
<td>Output power 0-PM,N 0-20 mA (0-PNOM = 0-20 MA)</td>
<td>[9]</td>
</tr>
<tr>
<td>Output power 0-PM,N 4-20 mA (0-PNOM = 4-20 MA)</td>
<td>[10]</td>
</tr>
<tr>
<td>Inverter temperature 68-212 °F (20-100 °C) 0-20 mA (TEMP 20-100 C=0-20 MA)</td>
<td>[11]</td>
</tr>
<tr>
<td>Inverter temperature 68-212 °F (20-100 °C) 4-20 mA (TEMP 20-100 C=0-20 MA)</td>
<td>[12]</td>
</tr>
</tbody>
</table>

Function:

The analog output can be used for stating a process value. It is possible to choose two types of output signals 0-20 mA or 4-20 mA. If used as a voltage output (0-10 V), a pull-down resistor of 500 Ω must be fitted to common (terminal 55). If the output is used as a current output the resulting resistance from the equipment connected may not exceed 500 Ω.

Description of choice:

No function. Is selected if the analog output is not to be used.

External Ref_MIN - Ref_MAX 0-20 mA/4-20 mA.
An output signal is obtained, which is proportional to the resulting reference value in the interval Minimum reference, Ref_MIN - Maximum reference, Ref_MAX (parameters 204/205).

FB_MIN-FB_MAX 0-20 mA/4-20 mA.
An output signal is obtained, which is proportional to the feedback value in the interval Minimum feedback, FB_MIN - Maximum feedback, FB_MAX (parameter 414/415).

0'-f_MAX 0-20 mA/4-20 mA.
An output signal is obtained, which is proportional to the output frequency in the interval 0 - f_MAX (parameter 202 Output frequency, high limit, f_MAX).

0 - l_INV 0-20 mA/4-20 mA.
An output signal is obtained, which is proportional to the output current in the interval 0 - l_INV

0 - P_M,N 0-20 mA/4-20 mA.
An output signal is obtained, which is proportional to the present output power. 20 mA corresponds to the value set in parameter 102 Motor power, P_M,N.

0 - Temp_MAX 0-20 mA/4-20 mA.
An output signal is obtained, which is proportional to the present heatsink temperature. 0/4 mA corresponds to a heatsink temperature of less than 68 °F (20 °C), and 20 mA corresponds to 212 °F (20 °C).

323 Relay output 1-3
(RELAY 1-3 FUNCT.)

Value:

<table>
<thead>
<tr>
<th>No function (NO OPERATION)</th>
<th>[0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>*/Unit ready (UNIT READY)</td>
<td>[1]</td>
</tr>
<tr>
<td>Enable/no warning (ENABLE/NO WARNING)</td>
<td>[2]</td>
</tr>
<tr>
<td>Running (RUNNING)</td>
<td>[3]</td>
</tr>
<tr>
<td>Running in reference, no warning (RUN ON REF/NO WARN)</td>
<td>[4]</td>
</tr>
<tr>
<td>Running, no warnings (RUNNING/NO WARNING)</td>
<td>[5]</td>
</tr>
<tr>
<td>Running in reference range, no warnings</td>
<td></td>
</tr>
</tbody>
</table>
The adjustable frequency drive is ready for operation, but no start command has been given. No warning.

Running:
A start command has been given. Also active during ramp down.

Running in reference, no warning:
The drive is running at reference speed. No warning.

Running, no warning:
A start command has been given. No warning.

Running in reference range:
The drive is being controlled by a remote reference and is running within range.

Ready - AC line voltage within range:
The adjustable frequency drive is ready for use; the control card is receiving a supply voltage; and there are no active control signals on the inputs. The AC line voltage lies within the voltage limits.

Alarm or warning:
An alarm or a warning exists in the drive.

Current limit:
The output current is higher than the value programmed in parameter 221 Current limit \(I_{\text{lim}} \).

Alarm:
The output is activated by an alarm.

Output frequency higher than \(f_{\text{LOW}} \):
The output frequency is higher than the value set in parameter 225 Warning: Low frequency, \(f_{\text{LOW}} \).

Output frequency higher than \(F_{\text{HIGH}} \):
The output frequency is higher than the value set in parameter 225 Warning: Low frequency, \(F_{\text{LOW}} \).

Output current higher than \(I_{\text{LOW}} \):
The output current is higher than the value set in parameter 223 Warning: Low current, \(I_{\text{LOW}} \).
Output current lower than I_{HIGH}:
The output current is lower than the value set in parameter 224 Warning: High current, I_{HIGH}.

Feedback higher than FB_{LOW}:
The feedback value is higher than the value set in parameter 227 Warning: Low feedback, FB_{LOW}.

Feedback lower than FB_{HIGH}:
The feedback value is lower than the value set in parameter 228 Warning: High current, I_{HIGH}.

Relay 123:
Only used in connection with Profibus.

Reversing:
The drive is running in reverse direction.

Thermal warning:
Above the temperature limit in either the motor or the adjustable frequency drive, or from a thermistor connected to a digital input.

Local operation:
The output is active when in parameter 002 Local/remote operation, Local operation [1] has been selected.

Out of the frequency range:
The output frequency is out of the programmed frequency range in parameters 225 and 226.

Out of the current range:
The motor current is out of the programmed range in parameters 223 and 224.

Out of the feedback range:
The feedback signal is out of the programmed range in parameters 227 and 228.

Mechanical brake control:
Enables control of an external mechanical brake.

Control word bit 11:
Relay output 1-3 can be controlled by serial communication protocols that access bit 11 in the control word.

327 Pulse/reference feedback
(PULSE REF/FB MAX)

| Value | 150 - 67600 Hz | ★ 5000 Hz |

Function:
This parameter is used for setting the signal value that corresponds to the maximum value set in parameter 205 Maximum reference, Ref_{MAX} or to the maximum feedback value set in parameter 415 Maximum feedback, FB_{MAX}.

Description of choice:
Set the required pulse reference or pulse feedback to be connected to terminal 33.

328 Maximum Pulse 29
(MAX PULSE 29)

| Value | 150 - 67600 Hz | ★ 5000 Hz |

Function:
This parameter is used for setting the signal value that corresponds to the maximum value set in parameter 205 Maximum reference, Ref_{MAX} or to the maximum feedback value set in parameter 415 Maximum feedback, FB_{MAX}.

NOTE
Only relevant for DeviceNet. See MG90BXYY for further information.

341 Digital / pulse output terminal 46
(DO 46 FUNCTION)

Function:
The digital output can be used for giving the present status or warning. The digital output (terminal 46) gives

★ = factory setting. () = display text [] = value for use in communication via serial communication port.

MG.28.A8.22 - VLT is a registered Danfoss trademark
a 24 V DC signal when a given condition is fulfilled. Terminal can also be used for frequency output. Parameter 342 sets the maximum pulse frequency.

Description of choice:

Pulse reference Ref_{MIN} - \text{RefMAX}

An output signal is obtained, which is proportional to the resulting reference value in the interval Minimum reference, \(\text{Ref}_{\text{MIN}}\) - Maximum reference, \(\text{Ref}_{\text{MAX}}\) (parameters 204/205).

Pulse feedback FB_{MIN}-FB_{MAX}.

An output signal is obtained, which is proportional to the feedback value in the interval Minimum feedback, \(\text{FB}_{\text{MIN}}\) - Maximum feedback, \(\text{FB}_{\text{MAX}}\) (parameter 414/415).

Output frequency 0-f_{MAX}.

An output signal is obtained, which is proportional to the output frequency in the interval 0 - \(f_{\text{MAX}}\) (parameter 202 Output frequency, high limit, \(f_{\text{MAX}}\)).

Pulse current 0 - IIN_N.

An output signal is obtained, which is proportional to the output current in the interval 0 - \(I_{\text{INV}}\).

Pulse power 0 - PM_N.

An output signal is obtained, which is proportional to the present output power. Par. 342 corresponds to the value set in parameter 102 Motor power, \(P_{\text{MN}}\).

Pulse temperature 0 - Temp_\text{MAX}.

An output signal is obtained, which is proportional to the present heatsink temperature. 0 Hz corresponds to a heatsink temperature of less than 68 °F (20° C), and 20 mA corresponds to 212 °F (100° C).

NOTE

Output terminal 46 is not available on DeviceNet. Minimum output frequency at frequency output = 16 Hz

342 Terminal 46, max. pulse scaling

(\(\text{DO 46 MAX. PULS}\))

Value:

- 150 - 10000 Hz
- ★ 5000 Hz

Function:

This parameter is used for setting the pulse output signal’s maximum frequency.

343 Precise stop function

(\(\text{PRECISE STOP}\))

Value:

- ★ Precise ramp stop (NORMAL) [0]
- Counter stop with reset (COUNT STOP RESET) [1]
- Counter stop without reset (COUNT STOP NO RESET) [2]
- Speed-compensated stop (SPD CMP STOP) [3]
- Speed-compensated counter stop with reset (SPD CMP CSTOP W. RES) [4]
- Speed-compensated counter stop without reset (SPD CMP CSTOP NO RES) [5]

Function:

In this parameter you select which stop function is performed in response to a stop command. All six data selections contain a precise stop routine, thus ensuring a high level of repeat accuracy. The selections are a combination of the functions described below.

NOTE

Pulse start [8] may not be used together with the precise stop function.

Description of choice:

Precise ramp stop [0] is selected to achieve high repetitive precision at the stopping point.

Counter stop. Once it has received a pulse start signal the variable frequency drive runs until the number of pulses programmed by the user have been received at input terminal 33. In this way an internal stop signal will activate the normal ramp down time (parameter 208). The counter function is activated (starts timing) at the flank of the start signal (when it changes from stop to start).

Speed compensated stop. To stop at precisely the same point, regardless of the present speed, a stop signal received is delayed internally when the present speed is lower than the maximum speed (set in parameter 202).
Reset. Counter stop and Speed-compensated stop can be combined with or without reset. Counter stop with reset [1]. After each precise stop the number of pulses counted during ramp down 0 Hz is reset. Counter stop without reset [2]. The number of pulses counted during ramp down to 0 Hz is deducted from the counter value in parameter 344.

344 Counter value
(PULSE COUNT PRE.)

<table>
<thead>
<tr>
<th>Value:</th>
<th>0 - 999999 ★ 100000 pulses</th>
</tr>
</thead>
</table>

Function:
In this parameter you can select the counter value to be used in the integrated precise stop function (parameter 343).

Description of choice:
The factory setting is 100000 pulses. The highest frequency (max. resolution) that can be registered at terminal 33 is 67.6 kHz.

349 Speed comp delay
(SPEED COMP DELAY)

<table>
<thead>
<tr>
<th>Value:</th>
<th>0 ms - 100 ms ★ 10 ms</th>
</tr>
</thead>
</table>

Function:
In this parameter the user can set the system’s delay time (Sensor, PLC, etc.). If you are running speed-compensated stop, the delay time at different frequencies has a major influence on the way in which you stop.

Description of choice:
The factory setting is 10 ms. This means that it is assumed that the total delay from the Sensor, PLC and other hardware corresponds to this setting.

NOTE
Only active for speed-compensated stop.
Special functions

400 Brake function

Value:
- Off (OFF) [0]
- Resistor brake (RESISTOR) [1]
- AC brake (AC BRAKE) [4]
- Load sharing (LOAD SHARING) [5]

Factory setting depends on unit type.

Function:
Resistor brake [1] is selected if the adjustable frequency drive has an integral brake transistor and the brake resistor is connected to terminals 81, 82. A higher intermediate circuit voltage is permitted during braking (generated operation) when a brake resistor is connected.

AC brake [4] can be selected to improve braking without using brake resistors. Please note that AC brake [4] is not as effective as Resistor brake [1].

Description of choice:

405 Reset function

Value:
- Manual reset (MANUAL RESET) [0]
- Automatic reset x 1 (AUTOMATIC X 1) [1]
- Automatic reset x 3 (AUTOMATIC X 3) [3]
- Automatic reset x 10 (AUTOMATIC X 10) [10]
- Reset at power-up (RESET AT POWER UP) [11]

A change of selection will not become active until the AC line voltage has been disconnected and reconnected.

Description of choice:

406 Automatic restart time

Value:
- 0 - 10 sec. (5 sec.)

Function:
This parameter allows setting of the time from tripping until the automatic reset function begins. It is assumed that automatic reset has been selected in parameter 405 Reset function.

Description of choice:
Set the required time.

409 Trip delay overcurrent, I_LIM

Value:
- 0 - 60 sec. (61=OFF) (OFF)

Function:
When the variable frequency drive registers that the output current has reached the current limit I_{LIM} (parameter 221 Current limit) and remains there for the preset time, it is disconnected. Can
be used to protect the application, like the ETR will protect the motor if selected.

Description of choice:
Select how long the variable frequency drive should maintain the output current at the current limit \(I_{LM} \) before it disconnects. At OFF parameter 409 *Trip delay overcurrent*, \(I_{LM} \) is not working, i.e. disconnection will not take place.

411 Switching frequency
(SWITCH FREQ.)

Value:
- 3000 - 14000 Hz (VLT 2803-75) ★ 4500 Hz
- 3000 - 10000 Hz (VLT 2880-82) ★ 4500 Hz

Function:
The set value determines the switching frequency of the inverter. If the switching frequency is changed, this may help to minimize possible acoustic noise from the motor.

NOTE
The output frequency of the adjustable frequency drive can never assume a value higher than 1/10 of the switching frequency.

Description of choice:
When the motor is running, the switching frequency is adjusted in parameter 411 *Switching frequency* until the frequency has been obtained at which the motor is as low-noise as possible.

NOTE
The switching frequency is reduced automatically as a function of the load. See *Temperature-Dependent Switching Frequency* under *Special Conditions*.

When LC-filter connected is selected in parameter 412, the switching frequency is 4.5 kHz.

412 Variable switching frequency
(VAR CARRIER FREQ.)

Value:
- ★Without LC-filter (WITHOUT LC-FILTER) [2]
- LC-filter connected (LC-FILTER CONNECTED) [3]

Function:
Parameter 414 *Minimum feedback, FBMIN* and 415 *Maximum feedback, FBMAX* are used to scale the display text to make it show the feedback signal in a process unit proportionally to the signal on the input.

Description of choice:
Set the value to be shown on the display as the minimum feedback signal value on the selected feedback input (parameters 308/314 *Analog inputs*).
415 Maximum feedback, \(\text{FB}_{\text{MAX}} \)

Value:
- \(\text{FB}_{\text{MIN}} \) - 100,000,000 ★ 1500,000

Function:
See description of parameter 414 Minimum feedback, \(\text{FB}_{\text{MIN}} \).

Description of choice:
Set the value to be shown on the display when the maximum feedback has been obtained on the selected feedback input (parameter 308/314 Analog inputs).

416 Process units

Value:
- No unit (NO UNIT) [0]
- % (%)[1]
- ppm (PPM) [2]
- rpm (RPM) [3]
- bar (BAR) [4]
- Cycles/min (CYCLE/MI) [5]
- Pulses/s (PULSE/S) [6]
- Units/s (UNITS/S) [7]
- Units/min. (UNITS/MI) [8]
- Units/h (UNITS/H) [9]
- °C (°C) [10]
- Pa (PA) [11]
- l/s (L/S) [12]
- m³/s (M³/S) [13]
- l/min. (L/M) [14]
- m³/min. (M³/MIN) [15]
- l/h (L/H) [16]
- m³/h (M³/H) [17]
- Kg (KG) [18]
- Kg/min. (KG/MIN) [19]
- Kg/hour (KG/H) [20]
- Tons/min. (T/MIN) [21]
- Tons/hour (T/H) [22]
- Metres (M) [23]
- Nm (NM) [24]
- m/s (M/S) [25]
- m/min. (M/MIN) [26]
- °F (°F) [27]
- In wg (IN WG) [28]
- gal/s (GAL/S) [29]
- Ft³/s (FT³/S) [30]

Function:
Select among different units to be shown on the display. The unit is read out if an LCP control unit can be connected, and if Reference [unit] [2] or Feedback [unit] [3] has been selected in one of parameters 009-012 Display read-out, and in Display mode. The unit is used in Closed loop also as a unit for Minimum/Maximum reference and Minimum/Maximum feedback.

Description of choice:
Select the required unit for the reference/feedback signal.

NOTE
Parameters 417-421 are only used, if in parameter 100 Configuration the selection made is Speed regulation, closed loop [1].

417 Speed PID proportional gain

Value:
0.000 (OFF) - 1.000 ★ 0.010

Function:
Proportional gain indicates how many times the fault (deviation between the feedback signal and the setpoint) is to be amplified.

Description of choice:
Quick regulation is obtained at high amplification, but if the amplification is too high, the process may become unstable in the case of overshooting.
418 Speed PID integral time
(SPEED INT. TIME)
Value:
20.00 - 999.99 ms (1000 = OFF) ★ 100 ms

Function:
The integral time determines how long the PID regulator takes to correct the error. The greater the error, the quicker the integrator frequency contribution will increase. The integral time is the time the integrator needs to achieve the same change as the proportional amplification.

Description of choice:
Quick regulation is obtained through a short integral time. However, if this time is too short, it can make the process unstable. If the integral time is long, major deviations from the required reference may occur, since the process regulator will take long to regulate if an error has occurred.

419 Speed PID differential time
(SPEED DIFF. TIME)
Value:
0.00 (OFF) - 200.00 ms ★ 20.00 ms

Function:
The differentiator does not react to a constant error. It only makes a contribution when the error changes. The quicker the error changes, the stronger the gain from the differentiator will be. The contribution is proportional to the speed at which errors change.

Description of choice:
Quick control is obtained by a long differential time. However, if this time is too long, it can make the process unstable. When the differential time is 0 ms, the D-function is not active.

420 Speed PID D-gain limit
(SPEED D-GAIN LIM)
Value:
5.0 - 50.0 ★ 5.0

Function:
It is possible to set a limit for the gain provided by the differentiator. Since the D-gain increases at higher frequencies, limiting the gain may be useful. This enables obtaining a pure D-gain at low frequencies and a constant D-gain at higher frequencies.

Description of choice:
Select the required gain limit.

421 Speed PID lowpass filter time
(SPEED FILT. TIME)
Value:
20 - 500 ms ★ 100 ms

Function:
Noise in the feedback signal is dampened by a first order lowpass filter to reduce the noise's impact on the regulation. This might be an advantage, e.g. if there is a great amount of noise on the signal. See drawing.

Description of choice:
If a time constant (t) of 100 ms is programmed, the cut-off frequency for the lowpass filter will be 1/0.1 = 10 RAD/sec., corresponding to (10 / 2 x π) = 1.6 Hz. The PID regulator will then only regulate a feedback signal that varies with a frequency of less than 1.6 Hz. If the feedback signal varies by a higher frequency than 1.6 Hz, it will be dampened by the lowpass filter.
VLT® 2800 Series

423 U1 voltage

(U1 VOLTAGE)

Value:

0.0 - 999.0 V ★ par. 103

Function:

Parameters 423-428 are used when in parameter 101 Torque characteristic a selection has been made of Special motor characteristic [8]. It is possible to determine a U/f characteristic on the basis of four definable voltages and three frequencies. The voltage at 0 Hz is set in parameter 133 Start voltage.

Description of choice:

Set the output voltage (U1) that is to match the first output frequency (F1), parameter 424 F1 frequency.

424 F1 frequency

(F1 FREQUENCY)

Value:

0.0 - Par. 426 F2 frequency ★ Par. 104 Motor frequency

Function:

See parameter 423 U1 voltage.

Description of choice:

Set the output frequency (F1) that is to match the first output voltage (U1), parameter 423 U1 voltage.

425 U2 voltage

(U2 VOLTAGE)

Value:

0.0 - 999.0 V ★ par. 103

Function:

See parameter 423 U1 voltage.

Description of choice:

Set the output voltage (U2) that is to match the second output frequency (F2), parameter 426 F2 frequency.

426 F2 frequency

(F2 FREQUENCY)

Value:

Par. 424 F1 frequency - Par. 428 F3 frequency ★ Par. 104 Motor frequency

Function:

See parameter 423 U1 voltage.

Description of choice:

Set the output frequency (F2) that is to match the second output voltage (U2), parameter 425 U2 voltage.

427 U3 voltage

(U3 VOLTAGE)

Value:

0.0 - 999.0 V ★ par. 103

Function:

See parameter 423 U1 voltage.

Description of choice:

Set the output voltage (U3) that is to match the third output frequency (F3), parameter 428 F3 frequency.

428 F3 frequency

(F3 FREQUENCY)

Value:

Par. 426 F2 frequency - 1000 Hz ★ Par. 104 Motor frequency

Function:

See parameter 423 U1 voltage.

Description of choice:

Set the output frequency (F3) that is to match the third output voltage (U3), parameter 427 U3 voltage.
NOTE
Parameters 437-444 are only used if in parameter 100 Configuration a selection has been made of Process regulation, closed loop. [3].

437 Process PID normal/inverse control
(PROC NO/INV CTRL)

Value:
★ Normal (NORMAL) [0]
Inverse (INVERSE) [1]

Function:
It is possible to choose whether the process regulator is to increase/reduce the output frequency if there is a deviation between the reference/setpoint and the actual process mode.

Description of choice:
If the variable frequency drive is to reduce the output frequency in case the feedback signal increases, select Normal [0]. If the variable frequency drive is to increase the output frequency in case the feedback signal increases, select Inverse [1].

438 Process PID anti windup
(PROC ANTI WINDUP)

Value:
Not active (DISABLE) [0]
★ Active (ENABLE) [1]

Function:
It is possible to select whether the process regulator is to continue regulating on a deviation even if it is not possible to increase/reduce the output frequency.

Description of choice:
The factory setting is Enable [1], which means that the integration link is initialized in relation to the actual output frequency if either the current limit, the voltage limit or the max./min. frequency has been reached. The process regulator will not engage again until either the error is zero or its sign has changed. Select Disable [0] if the integrator is to continue integrating on the deviation, even if it is not possible to remove the fault by such control.

439 Process PID start frequency
(PROC START VALUE)

Value:
fMIN - fMAX (parameter 201/202)
★ Par. 201 Output frequency, low limit, fMIN

Function:
When the start signal comes, the variable frequency drive will react in the form of Open loop and will not change to Closed loop until the programmed start frequency is reached. This makes it possible to set a frequency that corresponds to the speed at which the process normally runs, which will enable the required process conditions to be reached sooner.

Description of choice:
Set the required start frequency.

NOTE
If Disable [0] is selected, it will mean that when the deviation changes its sign, the integrator will first have to integrate down from the level obtained as a result of the former error, before any change in output frequency occurs.

440 Process PID proportional gain
(PROC. PROP. GAIN)

Value:
0.0 - 10.00
★ 0.01

Function:
The proportional gain indicates the number of times the deviation between the setpoint and the feedback signal is to be applied.

Description of choice:
Quick regulation is obtained by a high gain, but if the gain is too high, the process may become unstable due to overshoot.
441 Process PID integration time
Value:
0.01 - 9999.99 (OFF) ★ OFF

Function:
The integrator provides an increasing gain at a constant error between the reference/setpoint and the feedback signal. The greater the error, the quicker the integrator frequency contribution will increase. The integral time is the time needed by the integrator to make the same change as the proportional gain.

Description of choice:
Quick regulation is obtained at a short integral time. However, this time may become too short, which can make the process unstable due to overswing. If the integral time is long, major deviations from the required setpoint may occur, since the process regulator will take a long time to regulate in relation to a given error.

442 Process PID differentiation time
Value:
0.00 (OFF) - 10.00 sec. ★ 0.00 sec.

Function:
The differentiator does not react to a constant error. It only makes a gain when an error changes. The quicker the deviation changes, the stronger the gain from the differentiator. The gain is proportional to the speed at which the deviation changes.

Description of choice:
Quick regulation is obtained with a long differentiation time. However, this time may become too long, which can make the process unstable due to overswing.

443 Process PID diff. gain limit
Value:
5.0 - 50.0 ★ 5.0

Function:
It is possible to set a limit for the differentiator gain. The differentiator gain will increase if there are fast changes, which is why it can be beneficial to limit this gain. Thereby a pure differentiator gain is obtained

★ = factory setting. () = display text [] = value for use in communication via serial communication port

at slow changes and a constant differentiator gain where quick changes to the deviation occur.

Description of choice:
Select a differentiator gain limit as required.

444 Process PID lowpass filter time
Value:
0.02 - 10.00 ★ 0.02

Function:
Noise in the feedback signal is dampened by a first order lowpass filter to reduce the noise’s impact on the process regulation. This can be an advantage e.g. if there is a lot of noise on the signal.

Description of choice:
Select the required time constant (t). If a time constant (t) of 0.1 s is programmed, the cut-off frequency for the lowpass filter will be 1/0.1 = 10 RAD/sec., corresponding to (10 / 2 x π) = 1.6 Hz. The process regulator will thus only regulate a feedback signal that varies by a frequency lower than 1.6 Hz. If the feedback signal varies by a higher frequency than 1.6 Hz, it will be dampened by the lowpass filter.

445 Flying start
Value:
★ Off (DISABLE) [0]
OK - same direction (OK-SAME DIRECTION) [1]
OK - both directions (OK-BOTH DIRECTIONS) [2]
DC brake and start (DC-BRAKE BEF. START) [3]

Function:
This function makes it possible to ‘catch’ a rotating motor shaft, which is no longer controlled by the variable frequency drive, e.g. because of an AC line drop-out. The function is activated each time a start command is enabled. For the variable frequency drive to be able to ‘catch’ the rotating motor shaft, the motor speed must be lower than the frequency
that corresponds to the frequency in parameter 202 Output frequency, high limit, \(f_{\text{MAX}} \).

Description of choice:
Select Disable [0] if this function is not required.

Select OK - same direction [1] if the motor shaft is only able to rotate in the same direction when cutting in. OK - same direction [1] should be selected if in parameter 200 Output frequency range a selection has been of Clockwise only.

Select OK - both directions [2] if the motor is able to rotate in both directions when cutting in.

Select DC brake and start [3] if the frequency converter is to be able to brake the motor using the DC brake first, followed by start. It is assumed that parameters 126-127/132 DC brake are enabled. In the case of higher 'Windmilling' (rotating motor) effects, the variable frequency drive is not able to 'catch' a rotating motor without selecting DC brake and start.

Limitations:
- Too low inertia will lead to load acceleration, which can be dangerous or prevent correct catching of a rotating motor. Use the DC brake instead.
- If the load is driven, e.g. by 'Windmilling' (rotating motor) effects, the unit may cut out because of overvoltage.
- Flying start does not work at lower values than 250 rpm.

451 Speed PID feedforward factor

Value:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 500 %</td>
<td>100 %</td>
</tr>
</tbody>
</table>

Function:
This parameter is only active if in parameter 100 Configuration the selection made is Speed regulation, closed loop. The FF function sends a larger or smaller part of the reference signal outside the PID controller in such a way that the PID controller only has an influence on part of the control signal. Any change to the set point will thus have a direct effect on the motor speed. The FF factor provides high dynamism when changing the set point and less overswing.

Description of choice:
The required % value can be selected in the interval \(f_{\text{MIN}} - f_{\text{MAX}} \). Values over 100 % are used if the set point variations are only small.

452 Controller range

Value:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 200 %</td>
<td>10 %</td>
</tr>
</tbody>
</table>

Function:
This parameter is only active if in parameter 100 Configuration the selection made is Speed regulation, closed loop. The controller range (bandwidth) limits the output from the PID controller as a % of motor frequency \(f_{M,N} \).

Description of choice:
The required % value can be selected for motor frequency \(f_{M,N} \). If the controller range is reduced the speed variations will be less during initial tuning.

456 Brake Voltage Reduce

Value:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 25 V if 200V device</td>
<td>0</td>
</tr>
<tr>
<td>0 - 50 V if 400V device</td>
<td>0</td>
</tr>
</tbody>
</table>

Function:
The user sets the voltage by which the level for resistor braking is reduced. It is only active when resistor in parameter 400 is selected.

Description of choice:
The greater the reduction value, the faster the reaction to a generator overload. Should only be used if there are problems with overvoltage in the intermediate circuit.

★ = factory setting. () = display text [] = value for use in communication via serial communication port
Serial communication

500 Address

Value:
- 0 - 126
 - ★ 1

Function:
This parameter allows the allocation of an address to each variable frequency drive in a serial communication network.

Description of choice:
The individual variable frequency drive must be allocated a unique address.
If the number of units connected (variable frequency drives + master) is higher than 31, a repeater must be used.
Parameter 500 Address cannot be selected via the serial communication, but must be preset via the control unit.

501 Baudrate

Value:
- 300 Baud (300 BAUD) [0]
- 600 Baud (600 BAUD) [1]
- 1200 Baud (1200 BAUD) [2]
- 2400 Baud (2400 BAUD) [3]
- 4800 Baud (4800 BAUD) [4]
- ★ 9600 Baud (9600 BAUD) [5]

Function:
This parameter is for programming the speed at which data is transmitted via the serial port. Baud rate is defined as the number of bits transmitted per second.

Description of choice:
The variable frequency drive’s transmission speed must be set at a value corresponding to the transmission speed of the master.
Parameter 501 Baudrate cannot be selected via the serial port, but must be preset via the operating unit.

502 Coasting Stop

Value:
- Digital input (DIGITAL INPUT) [0]
- Serial port (SERIAL PORT) [1]
- Logic and (LOGIC AND) [2]
- ★ Logic or (LOGIC OR) [3]

Function:
Parameters 502-508 allow a choice between controlling the variable frequency drive via the digital inputs and/or via the serial port.
If Serial port [1] is selected, the relevant command can only be activated if a command is given via the serial port.
In the case of Logic and [2] the function must also be activated via a digital input.

Description of choice:
The table below shows when the motor is running and when it is coasting, when each of the following is selected: Digital input [0], Serial port [1], Logic and [2] or Logic or [3].

NOTE
Note that Coasting stop and Bit 03 in the control word are active at logic '0'.

<table>
<thead>
<tr>
<th>Function</th>
<th>Digital input [0]</th>
<th>Serial port [1]</th>
<th>Logic and [2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coasting</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Motor running</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

★ = factory setting. () = display text [] = value for use in communication via serial communication port
VLT® 2800 Series

<table>
<thead>
<tr>
<th>Logic or [3]</th>
<th>Dig. input</th>
<th>Ser. port</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>Coasting</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>Coasting</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>Coasting</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>Motor running</td>
</tr>
</tbody>
</table>

★ = factory setting. () = display text [] = value for use in communication via serial communication port
503 Quick-stop
(Q STOP SELECT)

Value:
- Digital input (DIGITAL INPUT) [0]
- Serial port (SERIAL PORT) [1]
- Logic and (LOGIC AND) [2]
- Logic or (LOGIC OR) [3]

Function:
See function description for parameter 502 Coasting stop.

Description of choice:
The table below shows when the motor is running and when it is in Quick stop mode, when each of the following is selected: Digital input [0], Serial port [1], Logic and [2] or Logic or [3].

NOTE
Note that Quick stop inverse and Bit 04 in the control word are active at logic '0'.

<table>
<thead>
<tr>
<th>Digital input [0]</th>
<th>Serial port</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Quick stop</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Quick stop</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Motor running</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Motor running</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Serial port [1]</th>
<th>Digital input [0]</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Quick stop</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Motor running</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Quick stop</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Motor running</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Logic and [2]</th>
<th>Digital input [0]</th>
<th>Serial port</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Quick stop</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Motor running</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Motor running</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Motor running</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Logic or [3]</th>
<th>Digital input [0]</th>
<th>Serial port</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Quick stop</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Quick stop</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Quick stop</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Motor running</td>
</tr>
</tbody>
</table>

504 DC brake
(DC BRAKE SELECT)

Value:
- Digital input (DIGITAL INPUT) [0]
- Serial port (SERIAL PORT) [1]
- Logic and (LOGIC AND) [2]
- Logic or (LOGIC OR) [3]

Function:
See function description for parameter 502 Coasting stop.

Description of choice:
The table below shows when the motor is running and the DC braking when each of the following is selected: Digital input [0], Serial port [1], Logic and [2] or Logic or [3].

NOTE
Note that DC braking inverse and Bit 02 in the control word are active at logic '0'.

<table>
<thead>
<tr>
<th>Digital input [0]</th>
<th>Serial port</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>DC braking</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>DC braking</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Motor running</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Motor running</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Serial port [1]</th>
<th>Digital input [0]</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>DC braking</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Motor running</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>DC braking</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Motor running</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Logic and [2]</th>
<th>Digital input [0]</th>
<th>Serial port</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Quick stop</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Motor running</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Motor running</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Motor running</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Logic or [3]</th>
<th>Digital input [0]</th>
<th>Serial port</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Quick stop</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Quick stop</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Quick stop</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Motor running</td>
</tr>
</tbody>
</table>
505 Start

Value:
- Digital input (DIGITAL INPUT) [0]
- Serial port (SERIAL PORT) [1]
- Logic and (LOGIC AND) [2]
- Logic or (LOGIC OR) [3]

Function:
See function description for parameter 502

Description of choice:
The table below shows when the motor has stopped and when the variable frequency drive has a start command when each of the following is selected: Digital input [0], Serial port [1], Logic and [2] or Logic or [3].

<table>
<thead>
<tr>
<th>Digital input [0]</th>
<th>Digital input [0]</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dig. input</td>
<td>Ser. port</td>
<td>Function</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>Stop</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Stop</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Start</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Start</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dig. input</td>
<td>Ser. port</td>
<td>Function</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>Stop</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Start</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Stop</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Start</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dig. input</td>
<td>Ser. port</td>
<td>Function</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>Stop</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Stop</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Stop</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Start</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Logic or [3]</th>
<th>Logic or [3]</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dig. input</td>
<td>Ser. port</td>
<td>Function</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>Stop</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Start</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Start</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Start</td>
</tr>
</tbody>
</table>

★ = factory setting. () = display text [] = value for use in communication via serial communication port

506 Reverse

Value:
- Digital input (DIGITAL INPUT) [0]
- Serial port (SERIAL PORT) [1]
- Logic and (LOGIC AND) [2]
- Logic or (LOGIC OR) [3]

Function:
See function description for parameter 502

Description of choice:
The table below shows when the motor is running clockwise and counter-clockwise when each of the following is selected: Digital input [0], Serial port [1], Logic and [2] or Logic or [3].

<table>
<thead>
<tr>
<th>Digital input [0]</th>
<th>Digital input [0]</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dig. input</td>
<td>Ser. port</td>
<td>Function</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>Clockwise</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Clockwise</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Counter-clockwise</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Counter-clockwise</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dig. input</td>
<td>Ser. port</td>
<td>Function</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>Clockwise</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Counter-clockwise</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Clockwise</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Counter-clockwise</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dig. input</td>
<td>Ser. port</td>
<td>Function</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>Clockwise</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Clockwise</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Clockwise</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Counter-clockwise</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Logic or [3]</th>
<th>Logic or [3]</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dig. input</td>
<td>Ser. port</td>
<td>Function</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>Clockwise</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Counter-clockwise</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Counter-clockwise</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Counter-clockwise</td>
</tr>
</tbody>
</table>

★ = factory setting. () = display text [] = value for use in communication via serial communication port.
507 Selection of Setup

(SETUP SELECT)

Value:
- Digital input (DIGITAL INPUT) [0]
- Serial communication (SERIAL PORT) [1]
- Logic and (LOGIC AND) [2]
- Logic or (LOGIC OR) [3]

Function:
See function description of parameter 502

Coasting stop.

Description of choice:
The table below shows which Setup (parameter 004 Active Setup) is selected for each of the following: Digital input [0], Serial communication [1], Logic and [2] or Logic or [3].

Digital input [0]

<table>
<thead>
<tr>
<th>Setup msb</th>
<th>Setup lsb</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Setup 1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Setup 2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Setup 3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Setup 4</td>
</tr>
</tbody>
</table>

Serial communication [1]

<table>
<thead>
<tr>
<th>Setup msb</th>
<th>Setup lsb</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Setup 1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Setup 2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Setup 3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Setup 4</td>
</tr>
</tbody>
</table>

Logic and [2]

<table>
<thead>
<tr>
<th>Bus Setup msb</th>
<th>Bus Setup lsb</th>
<th>Dig. Setup msb</th>
<th>Dig. Setup lsb</th>
<th>Setup no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

Logic or [3]

<table>
<thead>
<tr>
<th>Bus Setup msb</th>
<th>Bus Setup lsb</th>
<th>Dig. Setup msb</th>
<th>Dig. Setup lsb</th>
<th>Setup no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

★ = factory setting. () = display text [] = value for use in communication via serial communication port
508 Selection of preset ref.
(PRES. REF. SELECT)

Value:
- Digital input (DIGITAL INPUT) [0]
- Serial communication (SERIAL PORT) [1]
- Logic and (LOGIC AND) [2]
- Logic or (LOGIC OR) [3]

Function:
See function description of parameter 502 Coasting stop.

Description of choice:
Preset references via serial communication are active when parameter 512 Telegram profile is set to FC protocol [1].

509 Bus jog 1 (BUS JOG 1 FREQ.)
510 Bus jog 2 (BUS JOG 2 FREQ.)

Value:
0.0 - par. 202 Output frequency high limit
10.0 Hz

Function:
If parameter 512 Telegram Profile shows the selection Profidrive [0], two fixed speeds (Jog 1 or Jog 2) can be selected via the serial port.
The function is the same as in parameter 213 Jogging frequency.

Description of choice:
Jogging frequency f_{JOG} can be selected between 0 Hz and f_{MAX}.

512 Telegram Profile
(TELEGRAM PROFILE)

Value:
- Profidrive (PROFIDRIVE) [0]
- FC protocol (FC PROTOCOL) [1]

Function:
It is possible to choose between two different control word profiles.

Description of choice:
Select the desired control word profile.

See Serial port for VLT 2800 for further details of control word profiles.

513 Bus time interval
(BUS TIMEOUT TIME)

Value:
1 - 99 sec. 1 sec.

Function:
In this parameter it is possible to preset the maximum time expected to elapse between receipt of two consecutive telegrams. If this time is exceeded, the serial communication is assumed to have stopped and the desired reaction is preset in parameter 514 Bus time interval function.

Description of choice:
Preset the required time.

514 Bus time interval function
(BUS TIMEOUT FUNC)

Value:
- Off (OFF) [0]
- Freeze output frequency (FREEZE OUTPUT) [1]
- Stop (STOP) [2]
- Jogging (JOGGING) [3]
- Max. speed (MAX SPEED) [4]
- Stop and trip (STOP AND TRIP) [5]

Function:
In this parameter you can select the required reaction for the variable frequency drive when the preset time in parameter 513 Bus time interval has been exceeded. If choices [1] to [5] are activated the output relay will be deactivated.

Description of choice:
The output frequency of the variable frequency drive can be frozen at the present value, stop the motor, be frozen at parameter 213 Jogging frequency, be frozen at parameter 202 Output frequency, high limit f_{MAX} or stop and activate a cut out.
515-544 Data readout

<table>
<thead>
<tr>
<th>Par. no.</th>
<th>Description</th>
<th>Display text</th>
<th>Unit</th>
<th>Update interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>515</td>
<td>Res. reference</td>
<td>(REFERENCE %)</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>516</td>
<td>Res. reference [Unit]</td>
<td>(REFERENCE [UNIT])</td>
<td>Hz, rpm</td>
<td></td>
</tr>
<tr>
<td>517</td>
<td>Feedback [Unit]</td>
<td>(FEEDBACK [UNIT])</td>
<td>Par. 416</td>
<td></td>
</tr>
<tr>
<td>518</td>
<td>Frequency</td>
<td>(FREQUENCY)</td>
<td>Hz</td>
<td></td>
</tr>
<tr>
<td>519</td>
<td>Frequency x scale</td>
<td>(FREQUENCY X SCALE)</td>
<td>Hz</td>
<td></td>
</tr>
<tr>
<td>520</td>
<td>Motor current</td>
<td>(MOTOR CURRENT)</td>
<td>Amp</td>
<td></td>
</tr>
<tr>
<td>521</td>
<td>Torque</td>
<td>(TORQUE)</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>522</td>
<td>Power [kW]</td>
<td>(POWER (KW))</td>
<td>kW</td>
<td></td>
</tr>
<tr>
<td>523</td>
<td>Power [HP]</td>
<td>(POWER (HP))</td>
<td>HP</td>
<td></td>
</tr>
<tr>
<td>524</td>
<td>Motor voltage</td>
<td>(MOTOR VOLTAGE)</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>525</td>
<td>DC-link voltage</td>
<td>(DC LINK VOLTAGE)</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>526</td>
<td>Thermal load motor</td>
<td>(MOTOR THERMAL)</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>527</td>
<td>Thermal load inverter</td>
<td>(INV. THERMAL)</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>528</td>
<td>Digital input</td>
<td>(DIGITAL INPUT)</td>
<td>Bin</td>
<td></td>
</tr>
<tr>
<td>529</td>
<td>Term.53, analog input</td>
<td>(ANALOG INPUT 53)</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>531</td>
<td>Term.60, analog input</td>
<td>(ANALOG INPUT 60)</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>532</td>
<td>Pulse reference</td>
<td>(PULSE REFERENCE)</td>
<td>Hz</td>
<td></td>
</tr>
<tr>
<td>533</td>
<td>External ref.</td>
<td>(EXT. REF.%)</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>534</td>
<td>Status word, Hex</td>
<td>(STATUS WORD)</td>
<td>Hex</td>
<td></td>
</tr>
<tr>
<td>535</td>
<td>Bus feedback 1</td>
<td>(BUS FEEDBACK1)</td>
<td>Hex</td>
<td></td>
</tr>
<tr>
<td>537</td>
<td>Inverter temperature</td>
<td>(INVERTER TEMP)</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>538</td>
<td>Alarm word</td>
<td>(ALARM WORD)</td>
<td>Hex</td>
<td></td>
</tr>
<tr>
<td>539</td>
<td>Control word</td>
<td>(CONTROL WORD)</td>
<td>Hex</td>
<td></td>
</tr>
<tr>
<td>540</td>
<td>Warning word</td>
<td>(WARN. WORD)</td>
<td>Hex</td>
<td></td>
</tr>
<tr>
<td>541</td>
<td>Extended status word</td>
<td>(STATUS WORD)</td>
<td>Hex</td>
<td></td>
</tr>
<tr>
<td>544</td>
<td>Pulse count</td>
<td>(PULSE COUNT)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Function:

These parameters can be read out via the serial communication port and the LCP display. See also parameters 009-012 Display readout.

NOTE

- Parameters 515-541 can only be read out via an LCP control unit.

Description of choice:

Parameter 515, Resulting reference %:
Gives the resulting reference as a percentage in the range from Minimum reference, Ref_MIN to Maximum reference, Ref_MAX. See also Handling of References.

Parameter 516, Resulting reference [unit]:
Gives the resulting reference in Hz in closed loop (parameter 100). In closed loop the reference unit in parameter 416 Process units is selected.

Parameter 517, Feedback [unit]:

★ = factory setting. () = display text [] = value for use in communication via serial communication port.

Gives the resulting feedback value with the unit/scaling that is selected in parameters 414, 415 and 416. See also handling of feedback.

Parameter 518, Frequency [Hz]:
Gives the output frequency from the adjustable frequency drive.

Parameter 519, Frequency x scaling [-]:
Corresponds to the present output frequency \(f_M \) multiplied by the factor preset in parameter 008 Display scaling of output frequency .

Parameter 520, Motor current [A]:
Gives the motor’s phase current measured as an effective value.

Parameter 521, Torque [Nm]:
Gives the motor’s present load in relation to the motor’s rated torque.

Parameter 522, Power [kW]:

81
Gives the motor’s present power in kW which the motor absorbs.

Parameter 523, Power [HP]:
Gives the motor’s present voltage in HP which the motor absorbs.

Parameter 524, Motor voltage:
Gives the voltage supplied to the motor.

Parameter 525, DC link voltage:
Gives the intermediate circuit voltage in the adjustable frequency drive.

Parameter 526, Thermal load, motor [%]:
Gives the calculated/estimated thermal load on the motor. 100% is the trip point. See also parameter 128 Thermal motor protection.

Parameter 527, Thermal load INV [%]:
Gives the calculated/estimated thermal load on the adjustable frequency drive. 100% is the cut-out limit.

Parameter 528, Digital input:
Gives the signal status from the 5 digital inputs (18, 19, 27, 29 and 33). Input 18 corresponds to the bit on the extreme left. ‘0’ = no signal, ‘1’ = connected signal.

Parameter 529, Terminal 53 analog input [V]:
Gives the voltage value for the signal on terminal 53.

Parameter 531, Terminal 60 analog input [mA]:
Gives the current value for the signal on terminal 60.

Parameter 532, Pulse reference [Hz]:
Gives a pulse frequency in Hz connected to terminal 33.

Parameter 533, External reference:
Gives the sum of external references as a percentage (sum of analog/pulse/serial communication) in the range from Minimum reference, $R_{\text{e,MIN}}$ to Maximum reference, $R_{\text{e,MAX}}$.

Parameter 534, Status word:
Gives the present status word for the adjustable frequency drive in Hex. See Serial communication for the VLT 2800.

Parameter 535, Bus feedback:
Allows writing of a bus feedback value which will then form part of the feedback handling.

Parameter 537, Inverter temperature:
Gives the heatsink temperature on the adjustable frequency drive. The trip limit is 194°F - 212°F (90°C - 100°C), with reset at 158°F ± 9°F (70 ± 5 °C).

Parameter 538, Alarm word:
Gives in Hex code which alarm is on the adjustable frequency drive. See Warning word, extended status word and alarm word.

Parameter 539, Control word:
Gives the present control word on the adjustable frequency drive in Hex. See Serial communication for the VLT 2800.

Parameter 540, Warning word:
Gives whether there is a warning on the adjustable frequency drive in Hex. See Warning word, extended status word and alarm word.

Parameter 541, Extended status word:
Gives whether there is a warning on the adjustable frequency drive in Hex code. See Warning word, extended status word and alarm word.

Parameter 544, Pulse count:
This parameter can be read out via the LCP display (009-012). When you run with counter stop, this parameter enables you, either with or without reset, to read the number of pulses registered by the device. The highest frequency is 67.6 kHz, while the lowest is 5 Hz. The counter is reset when counter stop is restarted.

560 N2 Override release time

(52 OVER.REL.TIME)

Value:

| 1 - 65534 (OFF) sec. | ★ OFF |

Function:

In this parameter, the maximum time is set which is expected to pass between the receipt of two N2 telegrams in a row. If this time is exceeded, the serial communication is assumed to have stopped and all points in the N2 point-map which are overridden will be released in the order below:

1. Release Analog Outputs from point address (NPA) 0 to 255.
2. Release Binary Outputs from point address (NPA) 0 to 255.

★ = factory setting. () = display text [] = value for use in communication via serial communication port

MG.28.A8.22 - VLT is a registered Danfoss trademark
3. Release Internal Floating Points from point address (NPA) 0 to 255.
4. Release Internal Integer Points from point address (NPA) 0 to 255.
5. Release Internal Byte points from point address (NPA) 0 to 255.

Description of choice:
Set the required time.

561 Protocol (PROTOCOL)

Value:
- FC protocol (FC PROTOKOL) [1]
- Metasys N2 (METASYS N2) [2]

Function:
There is a choice of two different protocols.

Description of choice:
Select the required control word protocol.

For further information about using the Metasys N2 Protocol see MG91C1XX.

580-582 Defined parameters (DEFINED PNU’S)

Value:
Read only

Function:
The three parameters hold a list of all the parameters that are defined in the VLT 2800. It is possible to read single elements of the list by using the corresponding subindex. The subindexes start at 1 and follow the order of the parameter numbers.

Each parameter holds up to 116 elements (parameter numbers).

When a 0 is returned as parameter number the list ends.
Technical functions

600-605 Operating Data

<table>
<thead>
<tr>
<th>Par. no.</th>
<th>Description</th>
<th>Display text</th>
<th>Unit</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>Operating hours</td>
<td>(OPERATING HOURS)</td>
<td>Hours</td>
<td>0-130,000.0</td>
</tr>
<tr>
<td>601</td>
<td>Hours run</td>
<td>(RUNNING HOURS)</td>
<td>Hours</td>
<td>0-130,000.0</td>
</tr>
<tr>
<td>602</td>
<td>kWh counter</td>
<td>(KWH COUNTER)</td>
<td>kWh</td>
<td>Depends on unit</td>
</tr>
<tr>
<td>603</td>
<td>Number of power-ups</td>
<td>(POWER UPS)</td>
<td>Number of times</td>
<td>0-9999</td>
</tr>
<tr>
<td>604</td>
<td>Number of overtemperatures</td>
<td>(OVER TEMPS)</td>
<td>Number of times</td>
<td>0-9999</td>
</tr>
<tr>
<td>605</td>
<td>Number of overvoltages</td>
<td>(OVER VOLTS)</td>
<td>Number of times</td>
<td>0-9999</td>
</tr>
</tbody>
</table>

Function:

These parameters can be read out via the serial communication port and the LCP control unit.

Description of choice:

Parameter 600, Operating hours:

Gives the number of hours the adjustable frequency drive has been operating. The value is saved every hour and when there is an AC line failure. This value cannot be reset.

Parameter 601, Hours run:

Gives the number of hours the motor has been operating since the reset in parameter 619 Reset of hours-run counter. The value is saved every hour and when there is an AC line failure.

Parameter 602, kWh counter:

Gives the adjustable frequency drive’s output energy in kWh. The calculation is based on the mean kW value over one hour. This value can be reset using parameter 618 Reset of kWh counter. Range: 0 - depends on unit.

Parameter 603, Number of power-ups:

Gives the number of power-ups of the supply voltage undertaken on the adjustable frequency drive.

Parameter 604, Number of overtemperatures:

Gives the number of overtemperature faults that have been registered on the adjustable frequency drive’s heatsink.

Parameter 605, Number of overvoltages:

Gives the number of overvoltages of the intermediate circuit voltage in the adjustable frequency drive. This is only counted when Alarm 7 Overvoltage is active.

NOTE

Parameters 615-617 Fault log cannot be read out via the integral control unit.

615 Fault log: Error code

(F.LOG: ERROR COD)

<table>
<thead>
<tr>
<th>Value:</th>
<th>[Index 1 - 10] Error code: 0 - 99</th>
</tr>
</thead>
</table>

Function:

In this parameter it is possible to see the reason for a trip (cut-out of the variable frequency drive) occurring. 10 [1-10] log values are defined. The lowest log number [1] contains the latest/most recently saved data value. The highest log number [10] contains the oldest data value saved. If a trip occurs, it is possible to see the cause, time and a possible value of the output current or output voltage.

Description of choice:

Given as a fault code, in which the number refers to a table. See the table in Warnings/alarm messages.

616 Fault log: Time

(F.LOG: TIME)

<table>
<thead>
<tr>
<th>Value:</th>
<th>[Index 1 - 10] Hours: 0 - 130,000.0</th>
</tr>
</thead>
</table>

Function:

In this parameter it is possible to see the total number of operating hours in connection with the last 10 trips. 10 [1-10] log values are denoted. The lowest log number [1] contains the latest/most recently
saved data value, and the highest log number [10] contains the oldest data value.

Description of choice:
Read out as one value.

617 Fault log: Value

Value:
[Index 1 - 10] Value: 0 - 9999

Function:
In this parameter it is possible to see at which value a trip occurred. The unit of the value depends on which alarm is active in parameter 615 Fault log: Fault code.

Description of choice:
Read out as one value.

618 Reset of kWh counter

Value:
✭ No reset (DO NOT RESET) [0]
✭ Reset (RESET COUNTER) [1]

Function:
Resetting parameter 602 kWh counter to zero.

Description of choice:
If Reset [1] is selected and you press the [OK] key, the variable frequency drive’s kWh counter is reset to zero. This parameter cannot be selected via serial communication.

NOTE
When the [OK] key is activated, the counter is reset to zero.

619 RESET RUNNING HOURS COUNTER

Value:
✭ No reset (DO NOT RESET) [0]
✭ Reset (RESET COUNTER) [1]

Function:
Resetting of parameter 601 Hours run to zero.

Description of choice:
Normal function [0] is used for normal operation of the motor.

Control card test [2] is selected if you wish to check the control card’s analog/digital inputs, analog/digital outputs, relay outputs and 10 V and 24 V voltages. The test is performed as follows:
- 27 - 29 - 33 - 46 are connected.
- 50 - 53 are connected.
- 42 - 60 are connected.
- 12 - relay terminal 01 is connected.
- 18 - relay terminal 02 is connected.
- 19 - relay terminal 03 is connected.

See also the DeviceNet manual MG.90.BX.YY for further details.

NOTE
When the [OK] key is activated the parameter is reset to zero.

620 Operation Mode

Value:
✭ Normal operation (NORMAL OPERATION) [0]
✭ Control card test (CONTROL CARD TEST) [2]
✭ Initialize (INITIALIZE) [3]

Function:
In addition to its normal function, this parameter can be used to test the control card.

There is also the opportunity to perform an initialization at the factory setting for all parameters in all Setups, with the exception of parameters 500 Address, 501 Baudrate, 600-605 Operating data and 615-617 Fault log.

Description of choice:
If Reset [1] is selected and you press the [OK] key, the variable frequency drive’s kWh counter is reset to zero. This parameter cannot be selected via serial communication.

NOTE
When the [OK] key is activated, the counter is reset to zero.

Description of choice:
Read out as one value.
Use the following procedure for the control card test:

1. Select control card test.
2. Disconnect the AC line voltage and wait until the light in the display has disappeared.
3. Mount according to drawing and description.
4. Connect the AC line voltage.
5. The adjustable frequency drive automatically undertakes a test of the control card.

If the adjustable frequency drive displays a fault code from 37-45, the control card test has failed. Change the control card to start up the adjustable frequency drive.

If the adjustable frequency drive comes into Display mode, the test is OK. Remove the test connector and the adjustable frequency drive is ready for operation. Parameter 620 Operating mode is automatically set to Normal operation [0].

Initialization [3] is selected if you wish to use the unit’s factory setting.

Procedure for initialization:

1. Select Initialization [3].
2. Disconnect the AC line voltage and wait until the light in the display has disappeared.
3. Connect the AC line voltage.
4. An initialization is performed in all parameters in all Setups, with the exception of parameters 500 Address, 501 Baudrate, 600-605 Operating data and 615-617 Fault log.
Function:
The unit’s main data can be read out from parameters 621 to 635 Nameplate using the optional LCP 2 control unit or serial communication. Parameters 640 - 642 can also be seen on the unit’s integral display.

Description of choice:

Parameter 621 Nameplate: Unit type:
Gives unit size and AC line voltage.
Example: VLT 2811 380-480 V.

Parameter 624 Nameplate: Software version no.:
The unit’s present software version number appears here.
Example: V 1.00

Parameter 625 Nameplate: LCP ID number:
The ID number of the unit’s LCP appears here.
Example: ID 1.42 2 kB

Parameter 626 Nameplate: Database ID number:
The ID number of the software’s database appears here.
Example: ID 1.14.

Parameter 627 Nameplate: Power section version:
The ID number of the unit’s power section appears here.
Example: ID 1.15.

Parameter 628 Nameplate: Application option type:
Here you can see which types of application options are installed in the adjustable frequency drive.

Parameter 630 Nameplate: Communication option type:
Here you can see which types of communication options are installed in the adjustable frequency drive.

Parameter 632 Nameplate: BMC software identification:
The ID number of the unit’s BMC software appears here.
Example: BMC-SOFTWARE ID 1.3

Parameter 634 Nameplate: Unit identification for communication:
The ID number of the unit appears here.
Example: ID 1.15

Parameter 635 Nameplate: Software parts no.:
The ID number of the software’s parts appears here.
Example: SW. PART NO. 1.15

Parameter 640 Nameplate: Communication option type:
Here you can see which types of communication options are installed in the adjustable frequency drive.

Parameter 642 Nameplate: Power card identification:
The ID number of the unit’s power card appears here.
Example: POWER ID 1.15

★ = factory setting. () = display text [] = value for use in communication via serial communication port
Parameter 632 Nameplate: BMC software identification:
The ID number of the BMC software appears here.

Parameter 634 Nameplate: Unit identification for communication:
The ID number for communication appears here.

Parameter 635 Nameplate: Software section no.:
The software section number appears here.

Parameter 640 Nameplate: Software version:
The unit’s present software version number appears here. Example: 1.00

Parameter 641 Nameplate: BMC software identification:
The ID number of the BMC software appears here.

Parameter 642 Nameplate: Power card identification:
The ID number of the unit’s power part appears here. Example: 1.15

★ = factory setting. () = display text [] = value for use in communication via serial communication port
Warnings/alarm messages and corrective actions

The table below gives the drive’s warnings and alarms and indicates whether the fault trip locks the drive. After a Trip Lock Fault, the input power must be removed, the cause of the fault corrected, and input power restored to reset the drive. A Trip can be reset manually in any one of three ways.

1. Pressing the keypad key RESET
2. A digital input
3. Serial communication

In addition, an automatic reset may be selected in parameter 405, *Reset function* which will reset all non-trip lock faults.

Wherever an “X” is placed under both Warning and Alarm in the table below, this means that a Warning precedes the Alarm. It can also mean that it is possible to program whether a given fault is to result in a Warning or an Alarm. This is possible, for example, through parameter 128, *Motor thermal protection*. After a trip, the motor will be coasting and the drive’s Alarm and Warning indications will flash. If the fault is removed, only the Alarm will flash. After a reset, the drive will be ready to start operation again.

In the following detailed descriptions of warning and alarm messages, corrective actions to resolve the condition are recommended.

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Warning</th>
<th>Alarm</th>
<th>Trip locked</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Live zero error (LIVE ZERO ERROR)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>AC line phase loss (AC LINE PHASE LOSS)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td>Voltage warning high (DC LINK VOLTAGE HIGH)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Voltage warning low (DC LINK VOLTAGE LOW)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Overvoltage (DC LINK OVERVOLT)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>8</td>
<td>Undervoltage (DC LINK UNDervOLT)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>9</td>
<td>Inverter overload (INVERTER TIME)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Motor overloaded (MOTOR, TIME)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Motor thermistor (MOTOR THERMISTOR)</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Current limit (CURRENT LIMIT)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Overcurrent (OVERCURRENT)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>14</td>
<td>Ground fault (GROUND FAULT)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Switch mode fault (SWITCH MODE FAULT)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Short-circuit (CURR. SHORT CIRCUIT)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Serial communication timeout (STD BUS TIMEOUT)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>HPFb bus timeout (HPFb TIMEOUT)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Out of frequency range (OUT FREQ RNG/ROT LIM)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>HPFb communication fault (PROFIBUS OPT. FAULT)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Inrush fault (INRUSH FAULT)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Overtemperature (OVERTEMPERATURE)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37-45</td>
<td>Internal fault (INTERNAL FAULT)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>AMT not possible</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>AMT fault re. nameplate data (AMT TYPE, DATA FAULT)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>AMT wrong motor (AMT WRONG MOTOR)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>AMT timeout (AMT TIMEOUT)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>AMT warning during AMT (AMT WARN. DURING AMT)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>Locked (LOCKED)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LED indication

<table>
<thead>
<tr>
<th>LED indication</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Warning</td>
<td>yellow</td>
</tr>
<tr>
<td>Alarm</td>
<td>red</td>
</tr>
<tr>
<td>Trip locked</td>
<td>yellow and red</td>
</tr>
</tbody>
</table>
WARNING/ALARM 2: Live zero fault
The voltage or current signal on terminal 53 or 60 is below 50% of the preset value in parameter 309 or 315 Terminal, min. scaling.

WARNING/ALARM 4: AC line phase fault
Missing phase on AC line supply side.

Check the supply voltage to the adjustable frequency drive. This fault is only active in 3-phase AC line.

WARNING 5: Voltage warning high
If the DC bus voltage (VDC) is higher than Voltage warning high, the adjustable frequency drive will give a warning and the motor will continue to operate unchanged.

Check whether the supply voltage matches the rating of the adjustable frequency drive. (See Technical data.) If the VDC remains above the voltage warning limit, the inverter will trip after a fixed period of time. The time depends on the unit and is set at 5 - 10 sec.

NOTE: The adjustable frequency drive will trip with an alarm 7 (overvoltage). A voltage warning can also occur if the motor frequency is reduced too quickly due to the ramp down time being too short.

WARNING 6: Voltage warning low
If the DC bus voltage (VDC) is lower than Voltage warn low, the adjustable frequency drive will give a warning and the motor will continue to operate unchanged.

Check whether the supply voltage matches the rating of the adjustable frequency drive. (See Technical data.) If the VDC remains under the undervoltage limit, the inverter will switch off until the VDC once more falls below the undervoltage limit. Check whether the supply voltage fits the adjustable frequency drive. (See Technical data.) If the VDC remains under the undervoltage limit, the inverter will trip after a fixed period of time. The time depends on the unit and is set at 1 - 3 sec. When the adjustable frequency drive is switched off an alarm 8 (and warning 6) is displayed briefly and a trip reset is generated.

NOTE: Voltage warning low (warning 6) will thus also be able to generate an alarm 8.

WARNING/ALARM 7: Overvoltage
If the DC bus voltage (VDC) is higher than the inverter’s Overvoltage limit, the inverter will switch off until the VDC once more falls below the overvoltage limit. If the VDC remains above the overvoltage limit, the inverter will trip after a fixed period of time. The time depends on the unit and is set at 5 - 10 sec. When the inverter is switched off a trip reset is generated.

NOTE: Voltage warning high (warning 5) will thus also be able to generate an alarm 7. An overvoltage in the DC bus can occur if the motor frequency is reduced too quickly due to ramp-down time being too short.

WARNING/ALARM 8: Undervoltage
If the DC bus voltage is lower than the inverter’s Undervoltage limit, the inverter will switch off until the VDC once more goes above the undervoltage limit.

NOTE: Voltage warning low (warning 6) will thus also be able to generate an alarm 8.

WARNING/ALARM 9: Inverter overload
Electronic thermal inverter protection indicates that the adjustable frequency drive is close to disconnecting due to overloading (output current too high for too long). The counter for electronic thermal inverter protection gives a warning at 98% and trips at 100% giving an alarm.

The adjustable frequency drive cannot be reset until the counter is below 90%. Remove the overload condition to the drive.

WARNING/ALARM 10: Motor overloaded
According to the electronic thermal inverter protection the motor is too hot. In parameter 128 the user can select whether the VLT adjustable frequency drive should emit a warning or an alarm when the counter reaches 100%. This fault is due to the motor being overloaded by more than 100% for too long.

Check that motor parameters 102-106 are set correctly.

WARNING/ALARM 11: Motor thermistor
The motor is too hot or the thermistor/thermistor connection is cut off. Parameter 128 Motor thermal protection allows a choice of whether the adjustable frequency drive is to give a warning or an alarm.

Check that the PTC thermistor has been correctly connected between terminal 18, 19, 27 or 29 (digital input) and terminal 50 (+10 V supply).
WARNING/ALARM 12: Current limit
The output current is greater than the value in parameter 221 Current Limit ILimit.

The adjustable frequency drive will trip after a set period of time, as selected in parameter 409 Trip delay overcurrent.

WARNING/ALARM 13: Overcurrent
The inverter’s peak current limit (approx. 200% of rated output current) has been exceeded. The warning will last for approx. 1-2 secs, and the adjustable frequency drive will then trip and give an alarm.

Switch off the adjustable frequency drive and check that the motor shaft can be turned and that the motor size fits the adjustable frequency drive.

ALARM: 14: Ground fault
There is a discharge from the output phases to ground, either in the cable between the adjustable frequency drive and the motor, or in the motor.

Turn off the adjustable frequency drive and remove the ground fault.

ALARM: 15: Switch mode fault
Fault in switch mode power supply (internal supply).

Contact your Danfoss supplier.

ALARM: 16: Short-circuit
There is a short-circuit on the motor terminals or in the motor.

Disconnect the AC line supply to the adjustable frequency drive and remove the short-circuit.

WARNING/ALARM 17: Serial communication timeout
There is no serial communication to the adjustable frequency drive.

The warning will only be active when parameter 514 Bus time interval function has been set to a value other than OFF. If parameter 514 Bus time interval function has been set to Stop and trip [5], it will first give a warning and then ramp down, trip and issue an alarm. Parameter 803 Bus time interval could possibly be increased.

WARNING/ALARM 18: HPFB bus timeout
There is no serial communication to the adjustable frequency drive’s communication option card.

The warning will only be active when parameter 804 Bus time interval function has been set to a value other than OFF. If parameter 804 Bus time interval function has been set to Stop and trip, it will first give a warning and then ramp down, trip and issue an alarm. Parameter 803 Bus time interval could possibly be increased.

WARNING 33: Out of frequency range
This warning is active if the output frequency has reached Output frequency low limit (parameter 201) or Output frequency high limit (parameter 202).

If the VLT adjustable frequency drive is in a mode other than Process regulation, closed loop (parameter 100) the warning will be active in the display. If the VLT adjustable frequency drive is in a mode other than Process regulation, closed loop bit 008000 Out of frequency range in the extended status word will be active, but there will be no warning in the display.

WARNING/ALARM: 34: HPFB communication fault
Communication fault only occurs in Profibus versions.

ALARM 35: Inrush fault
This alarm appears when the adjustable frequency drive has been connected to the AC line supply too many times within 1 minute.

WARNING/ALARM 36: Overtemperature
If the temperature of the heatsink moves above 167°F - 185°F (75° - 85°C), depending on the unit, the adjustable frequency drive gives a warning, and the motor continues to operate unchanged. If the temperature continues to rise, the switching frequency is reduced automatically.

See Temperature-dependent switching frequency. If the temperature of the heatsink rises above 199°F - 212°F (92 - 100 °C), depending on the unit, the adjustable frequency drive will trip.

The temperature fault cannot be reset until the temperature of the heatsink has dropped to below 158°F (70 °C). The tolerance is ±9°F (±5 °C). The temperature can be caused by the following:

- Ambient temperature too high.
- Motor cable too long.
ALARMS 37-45: Internal faults
ALARM 37: Internal fault number 0
Communication fault between control card and BMC2.

ALARM 38: Internal fault number 1
Flash EEPROM fault on control card.

ALARM 39: Internal fault number 2
RAM fault on control card.

ALARM 40: Internal fault number 3
Calibration constant error in EEPROM.

ALARM 41: Internal fault number 4
Data values error in EEPROM.

ALARM 42: Internal fault number 5
Fault in motor parameter database.

ALARM 43: Internal fault number 6
General power card fault.

ALARM 44: Internal fault number 7
Minimum software version of control card or BMC2.

ALARM 45: Internal fault number 8
I/O fault (digital input/output, relay or analog input/output).

NOTE
When restarting after an alarm 38-45, the VLT adjustable frequency drive will display an alarm 37. In parameter 615 the actual alarm code can be read.

ALARMS 50-56: AMT faults
ALARM 50: AMT not possible
One of the following three possibilities can occur:
- The calculated Rs value falls outside permitted limits.
- The motor current in at least one of the motor phases is too low.
- The motor in use is too small for AMT calculations to be performed.

ALARM 51: AMT Fault re. nameplate data
There is inconsistency in the registered motor data.
Check the motor data for the relevant setup.

ALARM 52: AMT faulty motor phase
The motor current in at least one of the motor phases is too low.

ALARM 55: AMT timeout
The calculations are taking too long, possibly due to noise in the motor cables.

ALARM 56: AMT warning during AMT
An adjustable frequency drive warning is given while AMT is being performed.

WARNING 99: Locked
The control panel functions have been locked via parameter 018.

Alarm/warning limits:

<table>
<thead>
<tr>
<th></th>
<th>Without brake</th>
<th>With brake</th>
<th>Without brake</th>
<th>With brake</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undervoltage</td>
<td>215</td>
<td>215</td>
<td>410</td>
<td>410</td>
</tr>
<tr>
<td>Voltage warning low</td>
<td>230</td>
<td>230</td>
<td>440</td>
<td>440</td>
</tr>
<tr>
<td>Voltage warning high</td>
<td>385</td>
<td>400</td>
<td>765</td>
<td>800</td>
</tr>
<tr>
<td>Overvoltage</td>
<td>410</td>
<td>410</td>
<td>820</td>
<td>820</td>
</tr>
</tbody>
</table>

The voltages stated are the intermediate circuit voltage of the frequency converter with a tolerance of ±5%. The corresponding line voltage is the intermediate circuit voltage divided by 1.35.
Warning words, extended status words and alarm words

Warning words, status words and alarm words appear in the display in Hex format. If there are several warnings, status words or alarms, a total of all will be displayed. Warning words, status words and alarm words can also be read out using the serial bus in parameters 540, 541 and 538 respectively.

<table>
<thead>
<tr>
<th>Bit (Hex)</th>
<th>Warning words</th>
</tr>
</thead>
<tbody>
<tr>
<td>000008</td>
<td>HPFB bus timeout</td>
</tr>
<tr>
<td>000010</td>
<td>Standard bus timeout</td>
</tr>
<tr>
<td>000040</td>
<td>Current limit</td>
</tr>
<tr>
<td>000080</td>
<td>Motor thermistor</td>
</tr>
<tr>
<td>000100</td>
<td>Motor overload</td>
</tr>
<tr>
<td>000200</td>
<td>Inverter overload</td>
</tr>
<tr>
<td>000400</td>
<td>Undervolt</td>
</tr>
<tr>
<td>000800</td>
<td>Overvolt</td>
</tr>
<tr>
<td>001000</td>
<td>Voltage warning low</td>
</tr>
<tr>
<td>002000</td>
<td>Voltage warning high</td>
</tr>
<tr>
<td>004000</td>
<td>Phase loss</td>
</tr>
<tr>
<td>010000</td>
<td>Live zero error</td>
</tr>
<tr>
<td>400000</td>
<td>Out of frequency range</td>
</tr>
<tr>
<td>800000</td>
<td>Profibus communication fault</td>
</tr>
<tr>
<td>40000000</td>
<td>Switch mode warning</td>
</tr>
<tr>
<td>80000000</td>
<td>Heat sink temperature high</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit (Hex)</th>
<th>Alarm words</th>
</tr>
</thead>
<tbody>
<tr>
<td>000002</td>
<td>Triplock</td>
</tr>
<tr>
<td>000004</td>
<td>AMT tuning fail</td>
</tr>
<tr>
<td>000040</td>
<td>HPFB bus timeout</td>
</tr>
<tr>
<td>000080</td>
<td>Standard bus timeout</td>
</tr>
<tr>
<td>001000</td>
<td>Curr. short circuit</td>
</tr>
<tr>
<td>002000</td>
<td>Switch mode fault</td>
</tr>
<tr>
<td>004000</td>
<td>Ground fault</td>
</tr>
<tr>
<td>008000</td>
<td>Overcurrent</td>
</tr>
<tr>
<td>002000</td>
<td>Motor thermistor</td>
</tr>
<tr>
<td>004000</td>
<td>Motor overload</td>
</tr>
<tr>
<td>008000</td>
<td>Inverter overload</td>
</tr>
<tr>
<td>010000</td>
<td>Undervolt</td>
</tr>
<tr>
<td>020000</td>
<td>Overvolt</td>
</tr>
<tr>
<td>040000</td>
<td>Phase loss</td>
</tr>
<tr>
<td>080000</td>
<td>Live zero error</td>
</tr>
<tr>
<td>100000</td>
<td>Heat sink temperature too high</td>
</tr>
<tr>
<td>20000000</td>
<td>Profibus communication fault</td>
</tr>
<tr>
<td>80000000</td>
<td>Inrush fault</td>
</tr>
<tr>
<td>10000000</td>
<td>Internal fault</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit (Hex)</th>
<th>Extended status words</th>
</tr>
</thead>
<tbody>
<tr>
<td>000001</td>
<td>Ramping</td>
</tr>
<tr>
<td>000002</td>
<td>AMT running</td>
</tr>
<tr>
<td>000004</td>
<td>Start forw./reverse</td>
</tr>
<tr>
<td>000008</td>
<td>Slow down</td>
</tr>
<tr>
<td>000010</td>
<td>Catch-up</td>
</tr>
<tr>
<td>000020</td>
<td>Feedback high</td>
</tr>
<tr>
<td>000040</td>
<td>Feedback low</td>
</tr>
<tr>
<td>000080</td>
<td>Output current high</td>
</tr>
<tr>
<td>000100</td>
<td>Output current low</td>
</tr>
<tr>
<td>000200</td>
<td>Output frequency high</td>
</tr>
<tr>
<td>000400</td>
<td>Output frequency low</td>
</tr>
<tr>
<td>002000</td>
<td>Braking</td>
</tr>
<tr>
<td>008000</td>
<td>Out of frequency range</td>
</tr>
</tbody>
</table>
Special conditions

Extreme environments
An adjustable frequency drive contains a number of mechanical and electronic components which are vulnerable to environmental impact.

Do not install the adjustable frequency drive in environments where liquids, particles or gases in the air would damage the electronics of the drive. Take all necessary measures to protect the drive. There is a risk of fault trips and reduced service life of the drive.

Liquids carried through the air can condense in the adjustable frequency drive. Liquids may facilitate galvanic corrosion of components and metal parts. Steam, oil and brine may also cause corrosion of components and metal parts. In these areas, it is recommended to install units in cabinets. As a minimum, cabinets should meet NEMA 12.

Particles in the air, such as dust, may lead to mechanical, electrical and thermal faults in the adjustable frequency drive. A typical indicator of too many particles in the air is dust around the fan. In very dusty areas, mounting the drive in a cabinet is recommended. As a minimum, cabinets should meet NEMA 12.

Aggressive gases, such as sulfur, nitrogen and chlorine compounds, together with high humidity and temperature, facilitate possible chemical processes on the components of the adjustable frequency drive. These chemical processes quickly damage the electronics. In these areas, mounting in a cabinet with fresh-air circulation is recommended, thereby ensuring that aggressive gases are kept away from the drive.

NOTE Installation of adjustable frequency drives in extreme environments increases the risk of down-time, and considerable reduction of the service life of the drive.

Before the adjustable frequency drive is installed, check whether there are liquids, particles or gases in the air. Examine existing installations in the same environment. Typical indicators of harmful airborne liquids are water or oil on metal parts or corrosion. Too many dust particles are typically observed on top of cabinets. Indication of aggressive gases in the air are black copper rails and cable ends on existing electrical installations.

Galvanic isolation (PELV)
PELV (Protective Extra-Low Voltage) separation is achieved with galvanic separators between control circuits and circuits connected to the AC line potential. These separators meet the requirements for increased isolation in standard EN 50 178. Installation must be in accordance with local and national PELV regulations.

All control terminals, terminals for serial communication and relay terminals are safely separated from the AC line potential, i.e. they comply with the PELV requirements. Circuits that are connected to control terminals 12, 18, 19, 20, 27, 29, 33, 42, 46, 50, 55, 53 and 60 are galvanically connected to one another. Serial communication connected to terminals 67 - 70 is galvanically isolated from the control terminals, although this is only a functional isolation.

The relay contacts in terminals 1 - 3 are separated from the other control circuits with increased isolation, i.e. these comply with PELV even if there is AC line potential in the relay terminals.

The circuit elements described below form the safe electric separation. They fulfill the requirements for increased isolation and associated testing pursuant to EN 50 178.
1. Optical isolation between basic motor control and control card.
2. Optical isolation between basic motor control and control card.
3. Isolation between the control card and the power part.
4. Relay contacts and terminals relating to other circuits on the control card.

PELV isolation of the control card is guaranteed under the following conditions:
- TT network with maximum 300 Vrms between phase and ground.
- TN network with maximum 300 Vrms between phase and ground.
- IT network with maximum 400 Vrms between phase and ground.

At higher voltages only SELV is achieved.
UL Standard
This device is UL-approved.
General technical data

Electrical supply (L1, L2, L3):

Supply voltage VLT 2803-2815 220-240 V (N, L1) ... 1 x 220/230/240 V ±10%
Supply voltage FCD 2803-2840 200-240 V .. 3 x 200/208/220/230/240 V ±10%
Supply voltage FCD 2805-2882 380-480 V .. 3 x 380/400/415/440/480 V ±10%
Supply frequency .. 50/60 Hz ± 3 Hz

Max. imbalance on supply voltage .. ± 2.0% of rated supply voltage
True Power Factor (λ) .. 0.90 / at rated load
Displacement Power Factor (cos ϕ) .. near unity (> 0.98)

Number of connections at supply input L1, L2, L3 .. 2 times/min.
Max. short-circuit value .. 100,000A

See Special Conditions section in the Design Guide

Output data (U, V, W):

Output voltage .. 0 - 100% of supply voltage
Output frequency ... 0.2 - 132 Hz, 1 - 1000 Hz
Rated motor voltage, 200-240 V units .. 200/208/220/230/240 V
Rated motor voltage, 380-480 V units .. 380/400/415/440/460/480 V
Rated motor frequency .. 50/60 Hz

Switching on output ... Unlimited
Ramp times ... 0.02 - 3600 sec.

Torque characteristics:

Starting torque (parameter 101 Torque characteristic = Continuous torque) 160% in 1 min.*
Starting torque (parameter 101 Torque characteristics = Variable torque) 160% in 1 min.*
Starting torque (parameter 119 High starting torque) ... 180% for 0.5 sec.*
Overload torque (parameter 101 Torque characteristic = Continuous torque) 160%*
Overload torque (parameter 101 Torque characteristic = Variable torque) 160%*

*Percentage relates to adjustable frequency drive’s nominal current.

Control card, digital inputs:

Number of programmable digital inputs ... 5
Terminal number ... 18, 19, 27, 29, 33
Voltage level .. 0 - 24 VDC (PNP positive logic)
Voltage level, logic ‘0’ ... < 5 VDC
Voltage level, logic ‘1’ ... > 10 VDC

Maximum voltage on input ... 28 VDC
Input resistance, R (terminals 18, 19, 27, 29) ... approx. 4 kΩ
Input resistance, R (terminal 33) .. approx. 2 kΩ

All digital inputs are galvanically isolated from the supply voltage (PELV) and other high-voltage terminals. See section entitled Galvanic Isolation.
Control card, analog inputs:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of analog voltage inputs</td>
<td>1 pcs</td>
</tr>
<tr>
<td>Terminal number</td>
<td>53</td>
</tr>
<tr>
<td>Voltage level</td>
<td>0 - 10 V DC (scalable)</td>
</tr>
<tr>
<td>Input resistance, R_i</td>
<td>approx. 10 kΩ</td>
</tr>
<tr>
<td>Max. voltage</td>
<td>20 V</td>
</tr>
<tr>
<td>Number of analog current inputs</td>
<td>1 pcs</td>
</tr>
<tr>
<td>Terminal number</td>
<td>60</td>
</tr>
<tr>
<td>Current level</td>
<td>0/4 - 20 mA (scalable)</td>
</tr>
<tr>
<td>Input resistance, R_i</td>
<td>approx. 300 Ω</td>
</tr>
<tr>
<td>Max. current</td>
<td>30 mA</td>
</tr>
<tr>
<td>Resolution for analog inputs</td>
<td>10 bit</td>
</tr>
<tr>
<td>Accuracy of analog inputs</td>
<td>Max. error 1% of full scale</td>
</tr>
<tr>
<td>Scan interval</td>
<td>13.3 msec</td>
</tr>
</tbody>
</table>

The analog inputs are galvanically isolated from the supply voltage (PELV) and other high-voltage terminals. See section entitled Galvanic Isolation.

Control card, pulse inputs:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of programmable pulse inputs</td>
<td>1</td>
</tr>
<tr>
<td>Terminal number</td>
<td>33</td>
</tr>
<tr>
<td>Max. frequency on terminal 33</td>
<td>67.6 kHz (Push-pull)</td>
</tr>
<tr>
<td>Max. frequency on terminal 33</td>
<td>5 kHz (open collector)</td>
</tr>
<tr>
<td>Min. frequency on terminal 33</td>
<td>4 Hz</td>
</tr>
<tr>
<td>Voltage level, logic ‘0’</td>
<td>0 - 24 V DC (PNP positive logic)</td>
</tr>
<tr>
<td>Voltage level, logic ‘1’</td>
<td>< 5 V DC</td>
</tr>
<tr>
<td>Maximum voltage on input</td>
<td>> 10 VDC</td>
</tr>
<tr>
<td>Input resistance, R_i</td>
<td>approx. 2 kΩ</td>
</tr>
<tr>
<td>Scan interval</td>
<td>13.3 msec</td>
</tr>
<tr>
<td>Resolution</td>
<td>10 bit</td>
</tr>
<tr>
<td>Accuracy (100 Hz - 1 kHz) terminal 33</td>
<td>Max. error: 0.5% of full scale</td>
</tr>
<tr>
<td>Accuracy (1 kHz - 67.6 kHz) terminal 33</td>
<td>Max. error: 0.1% of full scale</td>
</tr>
</tbody>
</table>

The pulse input (terminal 33) is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals. See section entitled Galvanic Isolation.

Control card, digital/frequency output:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of programmable digital/pulse outputs</td>
<td>1 pcs</td>
</tr>
<tr>
<td>Terminal number</td>
<td>46</td>
</tr>
<tr>
<td>Voltage level at digital/frequency output</td>
<td>0 - 24 V DC (O.C PNP)</td>
</tr>
<tr>
<td>Max. output current at digital/frequency output</td>
<td>25 mA</td>
</tr>
<tr>
<td>Max. load at digital/frequency output</td>
<td>1 kΩ</td>
</tr>
<tr>
<td>Max. capacity at frequency output</td>
<td>10 nF</td>
</tr>
<tr>
<td>Minimum output frequency at frequency output</td>
<td>16 Hz</td>
</tr>
<tr>
<td>Maximum output frequency at frequency output</td>
<td>10 kHz</td>
</tr>
<tr>
<td>Accuracy on frequency output</td>
<td>Max. error: 0.2% of full scale</td>
</tr>
<tr>
<td>Resolution on frequency output</td>
<td>10 bit</td>
</tr>
</tbody>
</table>

The digital output is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals. See section entitled Galvanic Isolation.
Control card, analog output:

Number of programmable analog outputs ... 1
Terminal number .. 42
Current range at analog output ... 0/4 - 20 mA
Max. load to common at analog output ... 500 Ω
Accuracy on analog output ... Max. error: 1.5% of full scale
Resolution on analog output ... 10 bit

The analog output is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals. See section entitled Galvanic Isolation.

Control card, 24 V DC supply:

Terminal number .. 12
Max. load ... 130 mA

The 24 VDC supply is galvanically isolated from the supply voltage (PELV), but has the same potential as the analog and digital inputs and outputs. See section entitled Galvanic Isolation.

Control card, 10 V DC output:

Terminal number .. 50
Output voltage .. 10.5 V ±0.5 V
Max. load ... 15 mA

The 10 V DC supply is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals. See section entitled Galvanic Isolation.

Control card, RS 485 serial communication:

Terminal number .. 68 (TX+, RX+), 69 (TX-, RX-)
Terminal number 67 .. + 5 V
Terminal number 70 .. Common for terminals 67, 68 and 69

Full galvanic isolation. See section entitled Galvanic Isolation.

For DeviceNet units, see VLT 2800 DeviceNet manual, MG.90.BX.YY.

Relay outputs:

Number of programmable relay outputs ... 1
Terminal number, control card .. 1-3 (break), 1-2 (make)
Max. terminal load (AC) on 1-3, 1-2, control card .. 240 V AC, 2 A
Min. terminal load on 1-3, 1-2, control card ... 24 V DC 10 mA, 24 V AC 100 mA

The relay contact is separated from the rest of the circuit by strengthened isolation. See section entitled Galvanic Isolation.

Cable lengths and cross sections:

Max. motor cable length, screened/armored cable ... 130 ft (40 m)
Max. motor cable length, unscreened/unarmored cable .. 250 ft (75 m)
Max. motor cable length, screened/armored cable and motor coil 325 ft (100 m)
Max. motor cable length, unscreened/unarmored cable and motor coil 650 ft (200 m)
Max. motor cable length, screened/armored cable and RFI/1B filter 200 V, 325 ft (100 m)
Max. motor cable length, screened/armored cable and RFI 1B/LC filter 400 V, 80 ft (25 m)
Max. cross section to motor, see next section.
Max. cross section to control cables, rigid cable ... 1.5 mm²/16 AWG (2 x 0.75 mm²)
Max. cross section to control cables, flexible cable ... 1 mm²/18 AWG
Max. cross section to control cables, cable with enclosed core .. 0.5 mm²/20 AWG

When complying with EN 55011 1A and EN 55011 1B the motor cable must be reduced in certain instances.

Control characteristics:

- **Frequency range**: 0.2 - 132 Hz, 1 - 1000 Hz
- **Resolution of output frequency**
 - 0.013 Hz, 0.2 - 1000 Hz
- **Repeat accuracy of Precise start/stop (terminals 18, 19)**: ≤ ± 0.5 msec
- **System response time (terminals 18, 19, 27, 29, 33)**: ≤ 26.6 msec
- **Speed control range (open loop)**: 1:15 of synchronous speed
- **Speed control range (closed loop)**: 1:120 of synchronous speed
- **Speed accuracy (open loop)**: 90 - 3600 rpm: Max. error of ±23 rpm
- **Speed accuracy (closed loop)**: 30 - 3600 rpm: Max. error of ±7.5 rpm

All control characteristics are based on a 4-pole asynchronous motor

Surroundings:

- **Enclosure**: IP 20
- **Enclosure with options**: NEMA 1
- **Vibration test**: 0.037 oz
- **Max. relative humidity**: 5% - 93% during operation
- **Ambient temperature**: Max. 122 °F (45 °C) (24-hour average max. 113 °F (40 °C))

Derating for ambient temperature, see special conditions in the Design Guide

- **Min. ambient temperature during full-scale operation**: 32 °F (0 °C)
- **Min. ambient temperature at reduced performance**: 14 °F (-10 °C)
- **Temperature during storage/transport**: -13 - +150/160 °F (-25 - +65/70 °C)
- **Max. altitude above sea level**: 3280 ft (1000 m)

Derating for air pressure, see special conditions in the Design Guide

- **EMC standards, Emission**: EN 50081-2, EN 61800-3, EN 55011
- **EMC standards, Immunity**: EN 50082-1/2, EN 61000-4-2, EN 61000-4-3, EN 61000-4-4, EN 61000-4-5, EN 61000-4-6, EN 61800-3

See section on special conditions in the Design Guide

Safeguards:

- Electronic thermal motor protection against overload.
- Temperature monitoring of the power module ensures that the adjustable frequency drive cuts out if the temperature reaches 212 °F (100 °C). An overload temperature cannot be reset until the temperature of the power module is below 160 °F (70 °C).
- The frequency converter is protected against short-circuits on motor terminals U, V, W.
- If an electrical phase is missing, the variable frequency drive will cut out.
- Monitoring of the intermediate circuit voltage ensures that the variable frequency drive cuts out if the intermediate circuit voltage is too low or too high.
- The variable frequency drive is protected against ground fault on motor terminals U, V, W.
Technical data, mains supply 1 x 220 - 240 V/3 x 200-240V

<table>
<thead>
<tr>
<th>According to international standards</th>
<th>Type</th>
<th>2803</th>
<th>2805</th>
<th>2807</th>
<th>2811</th>
<th>2815</th>
<th>2822</th>
<th>2840</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output current</td>
<td>LNv [A]</td>
<td>2.2</td>
<td>3.2</td>
<td>4.2</td>
<td>6.0</td>
<td>6.8</td>
<td>9.6</td>
<td>16.0</td>
</tr>
<tr>
<td>(3 x 200-240V)</td>
<td>lmax (60s) [A]</td>
<td>3.5</td>
<td>5.1</td>
<td>6.7</td>
<td>9.6</td>
<td>10.8</td>
<td>15.3</td>
<td>25.6</td>
</tr>
<tr>
<td>Output power (230 V)</td>
<td>snv [KVA]</td>
<td>0.9</td>
<td>1.3</td>
<td>1.7</td>
<td>2.4</td>
<td>2.7</td>
<td>3.8</td>
<td>6.4</td>
</tr>
<tr>
<td>Typical shaft output</td>
<td>PMN [kW]</td>
<td>0.37</td>
<td>0.55</td>
<td>0.75</td>
<td>1.1</td>
<td>1.5</td>
<td>2.2</td>
<td>3.7</td>
</tr>
<tr>
<td>Typical shaft output</td>
<td>PMN [HP]</td>
<td>0.5</td>
<td>0.75</td>
<td>1.0</td>
<td>1.5</td>
<td>2.0</td>
<td>3.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Max. cable cross section, motor</td>
<td>[mm²/AWG]</td>
<td>4/10</td>
<td>4/10</td>
<td>4/10</td>
<td>4/10</td>
<td>4/10</td>
<td>4/10</td>
<td>4/10</td>
</tr>
<tr>
<td>Input current</td>
<td>Iln [A]</td>
<td>5.9</td>
<td>8.3</td>
<td>10.6</td>
<td>14.5</td>
<td>15.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(1 x 220-240 V)</td>
<td>ilmax (60s) [A]</td>
<td>9.4</td>
<td>13.3</td>
<td>16.7</td>
<td>23.2</td>
<td>24.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Input current</td>
<td>Iln [A]</td>
<td>2.9</td>
<td>4.0</td>
<td>5.1</td>
<td>7.0</td>
<td>7.6</td>
<td>8.8</td>
<td>14.7</td>
</tr>
<tr>
<td>(3 x 200-240 V)</td>
<td>ilmax (60s) [A]</td>
<td>4.6</td>
<td>6.4</td>
<td>8.2</td>
<td>11.2</td>
<td>12.2</td>
<td>14.1</td>
<td>23.5</td>
</tr>
<tr>
<td>Max. cable cross section, motor</td>
<td>[mm²/AWG]</td>
<td>4/10</td>
<td>4/10</td>
<td>4/10</td>
<td>4/10</td>
<td>4/10</td>
<td>4/10</td>
<td>4/10</td>
</tr>
<tr>
<td>Max. pre-fuses</td>
<td>IEC/UL [A]</td>
<td>20/20</td>
<td>20/20</td>
<td>20/20</td>
<td>20/20</td>
<td>20/20</td>
<td>20/20</td>
<td>25/25</td>
</tr>
<tr>
<td>Efficiency (%)</td>
<td>[%]</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>Power loss at 100% load</td>
<td>[W]</td>
<td>24</td>
<td>35</td>
<td>48</td>
<td>69</td>
<td>94</td>
<td>125</td>
<td>231</td>
</tr>
<tr>
<td>Weight</td>
<td>[lb]/[kg]</td>
<td>4.4/2.0</td>
<td>4.4/2.0</td>
<td>4.4/2.0</td>
<td>4.4/2.0</td>
<td>8.2/3.7</td>
<td>13.2/6.0</td>
<td></td>
</tr>
<tr>
<td>Enclosure</td>
<td>type</td>
<td>IP 20</td>
</tr>
</tbody>
</table>

1. American Wire Gauge. Max. cable cross section is the largest cable cross section that can be attached to the terminals. Always observe national and local regulations.
2. Type gG pre-fuses must be used for installation according to IEC rules. If you want to maintain UL/cUL you must use pre-fuses of the type Bussmann KTN-R 200 V, KTS-R 500 V or Ferraz Shawmut, type ATMR (max. 30A). The fuses must be placed for protection in a circuit that is capable of supplying a maximum of 100,000 amps RMS (symmetrical), 500 V maximum.
3. Measured using a 65.5 ft (25 m) shielded/armoured motor cable with a rated load and rated frequency.
4. IP20 is standard for VLT 2805-2875, whereas NEMA 1 is an option.
Technical data, AC line supply 3 x 380 - 480 V

<table>
<thead>
<tr>
<th>According to international standards</th>
<th>Type</th>
<th>2805</th>
<th>2807</th>
<th>2811</th>
<th>2815</th>
<th>2822</th>
<th>2830</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output current (3 x 380-480V)</td>
<td>I_{INV} [A]</td>
<td>1.7</td>
<td>2.1</td>
<td>3.0</td>
<td>3.7</td>
<td>5.2</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>I_{MAX(60s)} [A]</td>
<td>2.7</td>
<td>3.3</td>
<td>4.8</td>
<td>5.9</td>
<td>8.3</td>
<td>11.2</td>
</tr>
<tr>
<td>Output power (400 V)</td>
<td>S_{INV} [KVA]</td>
<td>1.1</td>
<td>1.7</td>
<td>2.0</td>
<td>2.6</td>
<td>3.6</td>
<td>4.8</td>
</tr>
<tr>
<td>Typical shaft output</td>
<td>P_{MN} [kW]</td>
<td>0.55</td>
<td>0.75</td>
<td>1.1</td>
<td>1.5</td>
<td>2.2</td>
<td>3.0</td>
</tr>
<tr>
<td>Typical shaft output</td>
<td>P_{MN} [HP]</td>
<td>0.75</td>
<td>1.0</td>
<td>1.5</td>
<td>2.0</td>
<td>3.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Max. cable cross section, motor</td>
<td>[mm²/AWG] 1)</td>
<td>4/10</td>
<td>4/10</td>
<td>4/10</td>
<td>4/10</td>
<td>4/10</td>
<td>4/10</td>
</tr>
</tbody>
</table>

Input current (3 x 380-480 V)	I_{L,N} [A]	1.6	1.9	2.6	3.2	4.7	6.1
	I_{L,MAX(60s)[A]}	2.6	3.0	4.2	5.1	7.5	9.8
Max. cable cross section, power	[mm²/AWG] 1)	4/10	4/10	4/10	4/10	4/10	4/10
Max. pre-fuses IEC/UL2) [A]	20/20	20/20	20/20	20/20	20/20	20/20	
Efficiency3) [%]	96	96	96	96	96	96	
Power loss at 100% load	[W]	28	38	55	75	110	150
Weight [lb]/[kg]	4.6/2.1	4.6/2.1	4.6/2.1	4.6/2.1	8.2/3.7	8.2/3.7	
Enclosure4)	type IP 20	IP 20					

<table>
<thead>
<tr>
<th>According to international standards</th>
<th>Type</th>
<th>2840</th>
<th>2855</th>
<th>2875</th>
<th>2880</th>
<th>2881</th>
<th>2882</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output current (3 x 380-480V)</td>
<td>I_{INV} [A]</td>
<td>9.1</td>
<td>12</td>
<td>16</td>
<td>24</td>
<td>32.0</td>
<td>37.5</td>
</tr>
<tr>
<td></td>
<td>I_{MAX(60s)} [A]</td>
<td>14.5</td>
<td>19.2</td>
<td>25.6</td>
<td>38.4</td>
<td>51.2</td>
<td>60.0</td>
</tr>
<tr>
<td>Output power (400 V)</td>
<td>S_{INV} [KVA]</td>
<td>6.3</td>
<td>8.3</td>
<td>11.1</td>
<td>16.6</td>
<td>22.2</td>
<td>26.0</td>
</tr>
<tr>
<td>Typical shaft output</td>
<td>P_{MN} [kW]</td>
<td>4.0</td>
<td>5.5</td>
<td>7.5</td>
<td>11.0</td>
<td>15.0</td>
<td>18.5</td>
</tr>
<tr>
<td>Typical shaft output</td>
<td>P_{MN} [HP]</td>
<td>5.0</td>
<td>7.5</td>
<td>10.0</td>
<td>15.0</td>
<td>20.0</td>
<td>25.0</td>
</tr>
<tr>
<td>Max. cable cross section, motor</td>
<td>[mm²/AWG] 1)</td>
<td>4/10</td>
<td>4/10</td>
<td>4/10</td>
<td>4/10</td>
<td>16/6</td>
<td>16/6</td>
</tr>
</tbody>
</table>

Input current (3 x 380-480 V)	I_{L,N} [A]	8.1	10.6	14.9	24.0	32.0	37.5		
	I_{L,MAX(60s)[A]}	13.0	17.0	23.8	38.4	51.2	60.0		
Max. cable cross section, power	[mm²/AWG] 1)	4/10	4/10	4/10	4/10	16/6	16/6		
Max. pre-fuses IEC/UL2) [A]	20/20	25/25	25/25	50/50	50/50	50/50			
Efficiency3) [%]	96	96	96	97	97	97			
Power loss at 100% load	[W]	200	275	372	412	562	693		
Weight [lb]/[kg]	3.7/8.2	13.2/6.0	13.2/6.0	40.8/18.5	40.8/18.5	40.8/18.5			
Enclosure4)	type IP20	IP20	IP20	IP20/	IP20/	IP20/	NEMA 1	NEMA 1	NEMA 1

1. American Wire Gauge. Max. cable cross section is the largest cable cross section that can be attached to the terminals. Always observe national and local regulations.
2. Type gG pre-fuses must be used for installation according to IEC rules. If you want to maintain UL/cUL you must use pre-fuses of the type Bussmann KTN-R 200 V, KTS-R 500 V or Ferraz Shawmut, type ATMR (max. 30A). The fuses must be placed for protection in a circuit that is capable of supplying a maximum of 100,000 amps RMS (symmetrical), 500 V maximum.
3. Measured using a 65.5 ft (25 m) shielded/armoured motor cable with a rated load and rated frequency.
4. IP20 is standard for VLT 2805-2875, whereas NEMA 1 is an option.
Available literature

Supplied with the unit
Below is a list of the literature available for VLT 2800. It must be noted that there may be deviations from one country to the next.

Supplied with the unit:

- Operating instructions ... MG.28.AX.YY

Various literature for VLT 2800:

- Data sheet MD.28.AX.YY

Instructions for VLT 2800:

- LCP remote-mounting kit .. MI.56.AX.51
- Filter instruction .. MI.28.B1.02
- VLT 2800 DeviceNet cable .. MI.28.F1.02
- Cold plate .. MI.28.D1.02
- Precise stop ... MI.28.C1.02

Communication with VLT 2800:

- Profibus manual ... MG.90.AX.YY
- VLT 2800 DeviceNet manual ... MG.90.BX.YY

\[X = \text{version number}\]

\[YY = \text{language version}\]
Parameter list with factory settings

<table>
<thead>
<tr>
<th>PNU #</th>
<th>Parameter description</th>
<th>Factory setting</th>
<th>4-setup</th>
<th>Conv. index</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Language</td>
<td>English</td>
<td>No</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>002</td>
<td>Local/remote operation</td>
<td>Remote-controlled</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>003</td>
<td>Local reference</td>
<td>000,000,000</td>
<td>Yes</td>
<td>-3</td>
<td>4</td>
</tr>
<tr>
<td>004</td>
<td>Active Setup</td>
<td>setup 1</td>
<td>No</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>005</td>
<td>Programming Setup</td>
<td>Active Setup</td>
<td>No</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>006</td>
<td>Setup copying</td>
<td>No copying</td>
<td>No</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>007</td>
<td>LCP copy</td>
<td>No copying</td>
<td>No</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>008</td>
<td>Display scaling</td>
<td>1.00</td>
<td>Yes</td>
<td>-2</td>
<td>6</td>
</tr>
<tr>
<td>009</td>
<td>Large display readout</td>
<td>Frequency [Hz]</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>010</td>
<td>Small display line 1.1</td>
<td>REFERENCE %</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>011</td>
<td>Small display line 1.2</td>
<td>Motor current [A]</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>012</td>
<td>Small display line 1.3</td>
<td>Power[kW]</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>013</td>
<td>Local control</td>
<td>Remote control</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>as par. 100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>014</td>
<td>Local stop/reset</td>
<td>Active</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>015</td>
<td>Local jog</td>
<td>Not active</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>016</td>
<td>Local reverse</td>
<td>Not active</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>017</td>
<td>Local reset of trip</td>
<td>Active</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>018</td>
<td>Data change lock</td>
<td>Not locked</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>019</td>
<td>Operating status at</td>
<td>Forced stop,</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>power up</td>
<td>use saved ref.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>020</td>
<td>Lock for Hand mode</td>
<td>Active</td>
<td>No</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>024</td>
<td>User-defined Quick Menu</td>
<td>Not active</td>
<td>No</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>025</td>
<td>Quick Menu Setup</td>
<td>000</td>
<td>No</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

4-setup:

"Yes" means that the parameter can be programmed individually in each of the four Setups, i.e. one single parameter can have four different data values. 'No' means that the data value will be the same in all Setups.

Conversion index:

This number refers to a conversion figure to be used when writing or reading via serial communication with a variable frequency drive.

Data type:

Data type shows the type and length of the telegram.

<table>
<thead>
<tr>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Integer 16</td>
</tr>
<tr>
<td>4</td>
<td>Integer 32</td>
</tr>
<tr>
<td>5</td>
<td>Unsigned 8</td>
</tr>
<tr>
<td>6</td>
<td>Unsigned 16</td>
</tr>
<tr>
<td>7</td>
<td>Unsigned 32</td>
</tr>
<tr>
<td>9</td>
<td>Text string</td>
</tr>
<tr>
<td>PNU #</td>
<td>Parameter description</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------</td>
</tr>
<tr>
<td>100</td>
<td>Configuration</td>
</tr>
<tr>
<td>101</td>
<td>Torque characteristics</td>
</tr>
<tr>
<td>102</td>
<td>Motor power P_{MN}</td>
</tr>
<tr>
<td>103</td>
<td>Motor voltage U_{MN}</td>
</tr>
<tr>
<td>104</td>
<td>Motor frequency f_{MN}</td>
</tr>
<tr>
<td>105</td>
<td>Motor current I_{MN}</td>
</tr>
<tr>
<td>106</td>
<td>Rated motor speed</td>
</tr>
<tr>
<td>107</td>
<td>Automatic motor adjustment</td>
</tr>
<tr>
<td>108</td>
<td>Stator resistance R_S</td>
</tr>
<tr>
<td>109</td>
<td>Stator reactance X_S</td>
</tr>
<tr>
<td>117</td>
<td>Resonance damping</td>
</tr>
<tr>
<td>119</td>
<td>High start torque</td>
</tr>
<tr>
<td>120</td>
<td>Start delay</td>
</tr>
<tr>
<td>121</td>
<td>Start function</td>
</tr>
<tr>
<td>122</td>
<td>Function at stop</td>
</tr>
<tr>
<td>123</td>
<td>Min. freq. for activation of par. 122</td>
</tr>
<tr>
<td>126</td>
<td>DC braking time</td>
</tr>
<tr>
<td>127</td>
<td>DC brake engaging frequency</td>
</tr>
<tr>
<td>128</td>
<td>Thermal motor protection</td>
</tr>
<tr>
<td>130</td>
<td>Start frequency</td>
</tr>
<tr>
<td>131</td>
<td>Voltage at start</td>
</tr>
<tr>
<td>132</td>
<td>DC brake voltage</td>
</tr>
<tr>
<td>133</td>
<td>Start voltage</td>
</tr>
<tr>
<td>134</td>
<td>Load compensation</td>
</tr>
<tr>
<td>135</td>
<td>U/f-ratio</td>
</tr>
<tr>
<td>136</td>
<td>Slip compensation</td>
</tr>
<tr>
<td>137</td>
<td>DC hold voltage</td>
</tr>
<tr>
<td>138</td>
<td>Brake cut out value</td>
</tr>
<tr>
<td>139</td>
<td>Brake cut in frequency</td>
</tr>
<tr>
<td>140</td>
<td>Current, minimum value</td>
</tr>
<tr>
<td>142</td>
<td>Leak reactance</td>
</tr>
<tr>
<td>143</td>
<td>Internal ventilator control</td>
</tr>
<tr>
<td>144</td>
<td>AC brake factor</td>
</tr>
<tr>
<td>146</td>
<td>Reset voltage vector</td>
</tr>
<tr>
<td>PNU #</td>
<td>Parameter description</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>200</td>
<td>Output frequency range</td>
</tr>
<tr>
<td>201</td>
<td>Output frequency, low limit f_{MIN}</td>
</tr>
<tr>
<td>202</td>
<td>Output frequency, high limit f_{MAX}</td>
</tr>
<tr>
<td>203</td>
<td>Reference range</td>
</tr>
<tr>
<td>204</td>
<td>Minimum ref f_{MIN}</td>
</tr>
<tr>
<td>205</td>
<td>Maximum ref f_{MAX}</td>
</tr>
<tr>
<td>206</td>
<td>Ramp type</td>
</tr>
<tr>
<td>207</td>
<td>Ramp-up time 1</td>
</tr>
<tr>
<td>208</td>
<td>Ramp-down time 1</td>
</tr>
<tr>
<td>209</td>
<td>Ramp-up time 2</td>
</tr>
<tr>
<td>210</td>
<td>Ramp-down time 2</td>
</tr>
<tr>
<td>211</td>
<td>Jog ramp time</td>
</tr>
<tr>
<td>212</td>
<td>Quick stop ramp-down time</td>
</tr>
<tr>
<td>213</td>
<td>Jog frequency</td>
</tr>
<tr>
<td>214</td>
<td>Reference function</td>
</tr>
<tr>
<td>215</td>
<td>Preset reference 1</td>
</tr>
<tr>
<td>216</td>
<td>Preset reference 2</td>
</tr>
<tr>
<td>217</td>
<td>Preset reference 3</td>
</tr>
<tr>
<td>218</td>
<td>Preset reference 4</td>
</tr>
<tr>
<td>219</td>
<td>Catch up/slow down reference</td>
</tr>
<tr>
<td>221</td>
<td>Current limit</td>
</tr>
<tr>
<td>223</td>
<td>Warn. Low current</td>
</tr>
<tr>
<td>224</td>
<td>Warn. High current</td>
</tr>
<tr>
<td>225</td>
<td>Warn. Low frequency</td>
</tr>
<tr>
<td>226</td>
<td>Warn. High frequency</td>
</tr>
<tr>
<td>227</td>
<td>Warn. Low Feedback</td>
</tr>
<tr>
<td>228</td>
<td>Warn. High Feedback</td>
</tr>
<tr>
<td>229</td>
<td>Frequency bypass, bandwidth</td>
</tr>
<tr>
<td>230</td>
<td>Frequency bypass 1</td>
</tr>
<tr>
<td>231</td>
<td>Frequency bypass 2</td>
</tr>
</tbody>
</table>
VLT® 2800 Series

<table>
<thead>
<tr>
<th>PNU #</th>
<th>Parameter description</th>
<th>Factory setting</th>
<th>4-setup</th>
<th>Conv. index</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>302</td>
<td>Digital input, term. 18</td>
<td>Start</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>303</td>
<td>Digital input, term. 19</td>
<td>Reverse</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>304</td>
<td>Digital input, term. 27</td>
<td>Reset and coast inverse</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>305</td>
<td>Digital input, term. 29</td>
<td>Jog</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>307</td>
<td>Digital input, term. 33</td>
<td>No function</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>308</td>
<td>Term. 53, analog input voltage</td>
<td>REFERENCE %</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>309</td>
<td>Term. 53, min scaling</td>
<td>0.0 V</td>
<td>Yes</td>
<td>-1</td>
<td>6</td>
</tr>
<tr>
<td>310</td>
<td>Term. 53, max scaling</td>
<td>10.0 V</td>
<td>Yes</td>
<td>-1</td>
<td>6</td>
</tr>
<tr>
<td>314</td>
<td>Term. 60, analog input current</td>
<td>No function</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>315</td>
<td>Term. 60, min scaling</td>
<td>0.0 mA</td>
<td>Yes</td>
<td>-4</td>
<td>6</td>
</tr>
<tr>
<td>316</td>
<td>Term. 60, max scaling</td>
<td>20.0 mA</td>
<td>Yes</td>
<td>-4</td>
<td>6</td>
</tr>
<tr>
<td>317</td>
<td>Time out</td>
<td>10 sec.</td>
<td>Yes</td>
<td>-1</td>
<td>5</td>
</tr>
<tr>
<td>318</td>
<td>Function after timeout</td>
<td>No function</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>319</td>
<td>Term. 42, analog output</td>
<td>0-IMAX = 0-20 mA</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>323</td>
<td>Relay output</td>
<td>Control ready</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>327</td>
<td>Pulse ref./FB</td>
<td>5000 Hz</td>
<td>Yes</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>341</td>
<td>Term. 46 digital output</td>
<td>Control ready</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>342</td>
<td>Term. 46 Max. pulse output</td>
<td>5000 Hz</td>
<td>Yes</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>343</td>
<td>Precise stop function</td>
<td>Normal ramp stop</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>344</td>
<td>Counter value</td>
<td>100000 pulses</td>
<td>Yes</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>349</td>
<td>Speed comp delay</td>
<td>10 ms</td>
<td>Yes</td>
<td>-3</td>
<td>6</td>
</tr>
</tbody>
</table>

4-Setup:
"Yes" means that the parameter can be programmed individually in each of the four Setups, i.e. one single parameter can have four different data values. 'No' means that the data value will be the same in all Setups.

Conversion index:
This number refers to a conversion figure to be used when writing or reading via serial communication with a variable frequency drive.

See Data character in Serial communication in the Design Guide.

Data type:
Data type shows the type and length of the telegram.

<table>
<thead>
<tr>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Integer 16</td>
</tr>
<tr>
<td>4</td>
<td>Integer 32</td>
</tr>
<tr>
<td>5</td>
<td>Unsigned 8</td>
</tr>
<tr>
<td>6</td>
<td>Unsigned 16</td>
</tr>
<tr>
<td>7</td>
<td>Unsigned 32</td>
</tr>
<tr>
<td>9</td>
<td>Text string</td>
</tr>
</tbody>
</table>

MG.28.A8.22 - VLT is a registered Danfoss trademark
Parameter List

<table>
<thead>
<tr>
<th>PNU #</th>
<th>Parameter Description</th>
<th>Factory Setting</th>
<th>4-Setup</th>
<th>Conv. Index</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>Brake function</td>
<td>Depends on unit type</td>
<td>No</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>405</td>
<td>Reset function</td>
<td>Manual reset</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>406</td>
<td>Aut. restart time</td>
<td>5 sec.</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>409</td>
<td>Trip delay overcurrent</td>
<td>Off (61 sec.)</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>411</td>
<td>Switching frequency</td>
<td>4.5 kHz</td>
<td>Yes</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>412</td>
<td>Var. carrier frequency</td>
<td>No LC-filter</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>413</td>
<td>Overmodulation function</td>
<td>On</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>414</td>
<td>Min. feedback</td>
<td>0.000</td>
<td>Yes</td>
<td>-3</td>
<td>4</td>
</tr>
<tr>
<td>415</td>
<td>Max. feedback</td>
<td>1500.000</td>
<td>Yes</td>
<td>-3</td>
<td>4</td>
</tr>
<tr>
<td>416</td>
<td>Process units</td>
<td>No unit</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>417</td>
<td>Speed PID propor.ampl.</td>
<td>0.010</td>
<td>Yes</td>
<td>-3</td>
<td>6</td>
</tr>
<tr>
<td>418</td>
<td>Speed PID intergra.</td>
<td>100 ms</td>
<td>Yes</td>
<td>-5</td>
<td>7</td>
</tr>
<tr>
<td>419</td>
<td>Speed PID differentiation time</td>
<td>20.00 ms</td>
<td>Yes</td>
<td>-5</td>
<td>7</td>
</tr>
<tr>
<td>420</td>
<td>Speed PID diff. amplification limit</td>
<td>5.0</td>
<td>Yes</td>
<td>-1</td>
<td>6</td>
</tr>
<tr>
<td>421</td>
<td>Speed PID lowpass filter</td>
<td>20 ms</td>
<td>Yes</td>
<td>-3</td>
<td>6</td>
</tr>
<tr>
<td>423</td>
<td>U1 voltage</td>
<td>par. 103</td>
<td>Yes</td>
<td>-1</td>
<td>6</td>
</tr>
<tr>
<td>424</td>
<td>F1 frequency</td>
<td>par. 104</td>
<td>Yes</td>
<td>-1</td>
<td>6</td>
</tr>
<tr>
<td>425</td>
<td>U2 voltage</td>
<td>par. 103</td>
<td>Yes</td>
<td>-1</td>
<td>6</td>
</tr>
<tr>
<td>426</td>
<td>F2 frequency</td>
<td>par. 104</td>
<td>Yes</td>
<td>-1</td>
<td>6</td>
</tr>
<tr>
<td>427</td>
<td>U3 voltage</td>
<td>par. 103</td>
<td>Yes</td>
<td>-1</td>
<td>6</td>
</tr>
<tr>
<td>428</td>
<td>F3 frequency</td>
<td>par. 104</td>
<td>Yes</td>
<td>-1</td>
<td>6</td>
</tr>
<tr>
<td>437</td>
<td>Proc. PID no/inv.</td>
<td>Normal</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>438</td>
<td>Proc. PID anti wind.</td>
<td>Active</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>439</td>
<td>Proc. PID start frequency</td>
<td>Par. 201</td>
<td>Yes</td>
<td>-1</td>
<td>6</td>
</tr>
<tr>
<td>440</td>
<td>Proc. PID start proportional ampl.</td>
<td>0.01</td>
<td>Yes</td>
<td>-2</td>
<td>6</td>
</tr>
<tr>
<td>441</td>
<td>Proc. PID integration time</td>
<td>Off (9999.99 s)</td>
<td>Yes</td>
<td>-2</td>
<td>7</td>
</tr>
<tr>
<td>442</td>
<td>Proc. PID differentiation time</td>
<td>Off (0.00 s).</td>
<td>Yes</td>
<td>-2</td>
<td>6</td>
</tr>
<tr>
<td>443</td>
<td>Proc. PID diff. ampl. limit</td>
<td>5.0</td>
<td>Yes</td>
<td>-1</td>
<td>6</td>
</tr>
<tr>
<td>444</td>
<td>Proc. PID lowpass filter time</td>
<td>0.02 s</td>
<td>Yes</td>
<td>-2</td>
<td>6</td>
</tr>
<tr>
<td>445</td>
<td>Flying start</td>
<td>Not possible</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>451</td>
<td>Speed PID feedforward factor</td>
<td>100%</td>
<td>Yes</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>452</td>
<td>Controller range</td>
<td>10 %</td>
<td>Yes</td>
<td>-1</td>
<td>6</td>
</tr>
<tr>
<td>456</td>
<td>Brake voltage reduce</td>
<td>0</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>461</td>
<td>Feedback conversion</td>
<td>Linear</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>PNU #</td>
<td>Parameter description</td>
<td>Factory setting</td>
<td>4-setup</td>
<td>Conv.Index</td>
<td>Datatype</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------</td>
<td>-----------------</td>
<td>---------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>500</td>
<td>Address</td>
<td>1</td>
<td>No</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>501</td>
<td>Baudrate</td>
<td>9600 Baud</td>
<td>No</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>502</td>
<td>Coasting stop</td>
<td>Logic or</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>503</td>
<td>Quick stop</td>
<td>Logic or</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>504</td>
<td>DC brake</td>
<td>Logic or</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>505</td>
<td>Start</td>
<td>Logic or</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>506</td>
<td>Reversing</td>
<td>Logic or</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>507</td>
<td>Selection of Setup</td>
<td>Logic or</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>508</td>
<td>Selection of preset ref.</td>
<td>Logic or</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>509</td>
<td>Bus jog 1</td>
<td>10.0 Hz</td>
<td>Yes</td>
<td>-1</td>
<td>6</td>
</tr>
<tr>
<td>510</td>
<td>Bus jog 2</td>
<td>10.0 Hz</td>
<td>Yes</td>
<td>-1</td>
<td>6</td>
</tr>
<tr>
<td>512</td>
<td>Telegram profile</td>
<td>FC protocol</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>513</td>
<td>Bus time interval</td>
<td>1 sec.</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>514</td>
<td>Bus time interval function</td>
<td>Off</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>515</td>
<td>Data readout: Reference %</td>
<td>No</td>
<td>-1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>516</td>
<td>Data readout: Reference [unit]</td>
<td>No</td>
<td>-3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>517</td>
<td>Data readout: Feedback [unit]</td>
<td>No</td>
<td>-3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>518</td>
<td>Data readout: Frequency</td>
<td>No</td>
<td>-1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>519</td>
<td>Data readout: Frequency x scaling</td>
<td>No</td>
<td>-1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>520</td>
<td>Data readout: Motor current</td>
<td>No</td>
<td>-2</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>521</td>
<td>Data readout: Torque</td>
<td>No</td>
<td>-1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>522</td>
<td>Data readout: Power [kW]</td>
<td>No</td>
<td>-2</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>523</td>
<td>Data readout: Power [HP]</td>
<td>No</td>
<td>-2</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>524</td>
<td>Data readout: Motor voltage [V]</td>
<td>No</td>
<td>-1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>525</td>
<td>Data readout: DC Link voltage</td>
<td>No</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>526</td>
<td>Data readout: Motor thermal load</td>
<td>No</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>527</td>
<td>Data readout: Inverter thermal load</td>
<td>No</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>528</td>
<td>Data readout: Digital input</td>
<td>No</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>529</td>
<td>Data readout: Analog input, term. 53</td>
<td>No</td>
<td>-1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>531</td>
<td>Data readout: Analog input, term. 60</td>
<td>No</td>
<td>-4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>532</td>
<td>Data readout: Pulse reference</td>
<td>No</td>
<td>-1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>533</td>
<td>Data readout: External reference</td>
<td>No</td>
<td>-1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>534</td>
<td>Data readout: Status word</td>
<td>No</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>537</td>
<td>Data readout: Inverter temperature</td>
<td>No</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>538</td>
<td>Data readout: Alarm word</td>
<td>No</td>
<td>0</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>539</td>
<td>Data readout: Control word</td>
<td>No</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>540</td>
<td>Data readout: Warning word</td>
<td>No</td>
<td>0</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>541</td>
<td>Data readout: Extended status word</td>
<td>No</td>
<td>0</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>544</td>
<td>Data readout: Pulse Count</td>
<td>No</td>
<td>0</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>
Data type:
Data type shows the type and length of the telegram.

<table>
<thead>
<tr>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Integer 16</td>
</tr>
<tr>
<td>4</td>
<td>Integer 32</td>
</tr>
<tr>
<td>5</td>
<td>Unsigned 8</td>
</tr>
<tr>
<td>6</td>
<td>Unsigned 16</td>
</tr>
<tr>
<td>7</td>
<td>Unsigned 32</td>
</tr>
<tr>
<td>9</td>
<td>Text string</td>
</tr>
</tbody>
</table>

4-Setup:

Yes means that the parameter can be programmed individually in each of the four Setups, i.e. one single parameter can have four different data values. *No* means that the data value will be the same in all Setups.

Conversion index:

This number refers to a conversion figure to be used when writing or reading via serial communication with a variable frequency drive.

See **Data character in Serial communication** in the Design Guide.

Parameter table

<table>
<thead>
<tr>
<th>PNU#</th>
<th>Parameter description</th>
<th>Factory setting</th>
<th>4-Setup</th>
<th>Conv. index</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>Operating hours</td>
<td>No</td>
<td>73</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>601</td>
<td>Hours run</td>
<td>No</td>
<td>73</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>602</td>
<td>kWh counter</td>
<td>No</td>
<td>2</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>603</td>
<td>Number of cut ins</td>
<td>No</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>604</td>
<td>Number of overheatings</td>
<td>No</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>605</td>
<td>Number of overvoltages</td>
<td>No</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>615</td>
<td>Fault log: Error code</td>
<td>No</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>616</td>
<td>Fault log: TIME</td>
<td>No</td>
<td>0</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>617</td>
<td>Fault log: Value</td>
<td>No</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>618</td>
<td>Reset of kWh counter</td>
<td>No reset</td>
<td>0</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>619</td>
<td>Reset of running hours</td>
<td>No reset</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>620</td>
<td>Operation mode</td>
<td>Normal operation</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>621</td>
<td>Nameplate: Unit type</td>
<td>No</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>624</td>
<td>Nameplate: Software version</td>
<td>No</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>625</td>
<td>Nameplate: LCP identification no.</td>
<td>No</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>626</td>
<td>Nameplate: Database identification no.</td>
<td>No</td>
<td>-2</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>627</td>
<td>Nameplate: Power parts version</td>
<td>No</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>628</td>
<td>Nameplate: Application option type</td>
<td>No</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>630</td>
<td>Nameplate: Communication option type</td>
<td>No</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>632</td>
<td>Nameplate: BMC software identification</td>
<td>No</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>634</td>
<td>Nameplate: Unit identification for communication</td>
<td>No</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>635</td>
<td>Nameplate: Software parts no.</td>
<td>No</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>640</td>
<td>Software version</td>
<td>No</td>
<td>-2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>641</td>
<td>BMC software identification</td>
<td>No</td>
<td>-2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>642</td>
<td>Power card identification</td>
<td>No</td>
<td>-2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Pages</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| A | AC brake .. 67
| | AC line connection ... 16
| | Active Setup .. 32
| | Address ... 75
| | Analog input .. 60
| | Analog output ... 62
| | Automatic motor tuning ... 41
| B | Baudrate .. 75
| | Brake connection .. 17
| | Brake cut in frequency ... 47
| | Brake cut out value ... 47
| | Brake function ... 67
| | Brake resistance .. 18
| | Brake Voltage Reduce .. 74
| | Bus jog ... 80
| | Bus time interval .. 80
| C | control panel ... 24
| | Catch up ... 54
| | CHANGE DATA ... 24
| | Connection of a 2-wire transmitter 22
| | Constant torque .. 39
| | Control keys ... 24
| | Control terminals ... 18
| | Control unit ... 24
| | Control wires .. 19
| | Counter value ... 66
| | Current limit .. 54
| | Current, minimum value .. 47
| D | Data readout ... 25
| | DC brake time .. 44
| | DC brake voltage .. 46
| | DC hold voltage .. 47
| | Diagram ... 13
| | Digital / pulse output ... 64
| | Digital inputs ... 58
| | Dimensions .. 5
| | Direction of motor rotation 16
| | Display mode ... 25
| | Display readout .. 27
| | Display scaling of output frequency 33
| E | Electrical installation ... 14
| | Electrical installation, control circuitry 18
| | EMC-correct electrical installation 11
| | ETR - Electronic Thermal Relay 45
| | Extreme environments ... 94
| F | Fan control .. 48
| | Fault log ... 84
| | Feedback .. 68
| | Flying start ... 73
| | Four Setups .. 32
| | Frequency bypass, bandwidth 56
| | Function at stop ... 44
| G | Gain AC brake .. 48
| | Galvanic isolation (PELV) ... 94
| | Ground connection ... 17
| | Grounding ... 10
| | Grounding of shielded/armoured control cables 12
| H | Hand / Auto mode operation 27
| | Hand mode .. 37
| | High voltage test .. 10
| | High voltage warning ... 4, 10
| I | Initialize .. 85
| | Input fuses .. 16
| | IP 21 solution ... 6
| J | Jog frequency .. 53
| | Jog ramp time .. 53
| L | Language ... 31
| | Large display readout .. 33
| | LCP copy .. 32
| | Leakage reactance ... 48
| | Literature ... 102

110

MG.28.A8.22 - VLT is a registered Danfoss trademark
Load compensation... 46
Load sharing.. 18
Local reference.. 31
Lock for data changes .. 36

M
Mains supply .. 100
Manual initialization.. 24
Maximum Pulse 29 ... 64
Mechanical installation .. 9
Menu mode ... 25, 25
Motor cables ... 17
Motor coils .. 6
Motor connection .. 16
Motor current ... 41
Motor frequency .. 40
Motor power ... 40
Motor thermal protection ... 16
Motor voltage .. 40

O
Operating mode at power-up, local operation 37
Output frequency .. 50
Overmodulation function ... 68

P
Parallel connection of motors ... 17
Parameter list with factory settings 103
Potentiometer reference ... 22
Precise stop function ... 66
Preset reference ... 54
Process control, closed loop ... 39
Process PID .. 72
Process units ... 69
Programming Setup .. 32
Programming the adjustable frequency drive 25
Pulse start/stop .. 22
Pulse/reference feedback ... 64

Q
Quick menu .. 25
QUICK MENU .. 24, 25
Quick Menu setup .. 38
Quick menu, userdefined ... 37
Quick stop ramp-down time .. 53

R
reverse ... 58
Ramp type .. 51
Ramp-down time .. 52
Ramp-up time ... 52
Rated motor speed ... 41
Reset function ... 67
Reset voltage vector .. 48
Resonance damping ... 42
Reset voltage vector .. 48

S
Slow down ... 54
See Derating for ambient temperature 29
Setup copying.. 32
Side-by-side .. 9
Slip compensation ... 47
Spacing for mechanical installation 9
Special motor mode ... 39
Speed comp delay .. 66
Speed control, closed loop ... 39
Speed control, open loop ... 39
Speed PID ... 69
Speed up/slow down .. 22
Start ... 73
Start delay .. 43
Start frequency ... 45
Start function ... 43
Start torque .. 43
Start voltage ... 46
Start/stop .. 22
Stator reactance .. 42
Stator resistance ... 41
Status LED ... 24
STOP/RESET .. 24
Sub D plug ... 21
Sum ... 53
Switching frequency ... 68

T
Telegram Profile ... 80
Temperature-related switching frequency 29
Terminal 42.. 62
